Classical capacity of averaged quantum channels

I. Bjelakovic, H. Boche
{"title":"Classical capacity of averaged quantum channels","authors":"I. Bjelakovic, H. Boche","doi":"10.1109/ISIT.2008.4594953","DOIUrl":null,"url":null,"abstract":"In this paper we extend recent coding results by Datta and Dorlas on classical capacity of averaged quantum channels with finitely many memoryless branches to arbitrary number of branches. Only assumption in our approach is that the channel satisfies some weak measurability properties. Our approach to the direct coding theorem is based on our previous work on compound classical-quantum channels. The weak converse requires an alternative characterization of the essential infimum and the remaining proof proceeds via application of Holevo's bound and Fano's inequality.","PeriodicalId":194674,"journal":{"name":"2008 IEEE International Symposium on Information Theory","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Symposium on Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2008.4594953","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper we extend recent coding results by Datta and Dorlas on classical capacity of averaged quantum channels with finitely many memoryless branches to arbitrary number of branches. Only assumption in our approach is that the channel satisfies some weak measurability properties. Our approach to the direct coding theorem is based on our previous work on compound classical-quantum channels. The weak converse requires an alternative characterization of the essential infimum and the remaining proof proceeds via application of Holevo's bound and Fano's inequality.
平均量子信道的经典容量
本文将Datta和Dorlas关于具有有限多个无记忆分支的平均量子信道经典容量的最新编码结果推广到任意数量的分支。在我们的方法中,唯一的假设是信道满足一些弱可测量性。我们对直接编码定理的方法是基于我们之前对复合经典量子信道的研究。弱逆需要对本质极小值进行另一种表征,剩余的证明通过Holevo界和Fano不等式的应用进行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信