An update on Hurwitz groups

M. Conder
{"title":"An update on Hurwitz groups","authors":"M. Conder","doi":"10.1515/gcc.2010.002","DOIUrl":null,"url":null,"abstract":"Abstract A Hurwitz group is any non-trivial finite quotient of the (2, 3, 7) triangle group, that is, any non-trivial finite group generated by elements x and y satisfying x 2 = y 3 = (xy)7 = 1. Every such group G is the conformal automorphism group of some compact Riemann surface of genus g > 1, with the property that |G| = 84(g – 1), which is the maximum possible order for given genus g. This paper provides an update on what is known about Hurwitz groups and related matters, following up the author's brief survey in Bull. Amer. Math. Soc.23 (1990).","PeriodicalId":119576,"journal":{"name":"Groups Complex. Cryptol.","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"50","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Groups Complex. Cryptol.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/gcc.2010.002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 50

Abstract

Abstract A Hurwitz group is any non-trivial finite quotient of the (2, 3, 7) triangle group, that is, any non-trivial finite group generated by elements x and y satisfying x 2 = y 3 = (xy)7 = 1. Every such group G is the conformal automorphism group of some compact Riemann surface of genus g > 1, with the property that |G| = 84(g – 1), which is the maximum possible order for given genus g. This paper provides an update on what is known about Hurwitz groups and related matters, following up the author's brief survey in Bull. Amer. Math. Soc.23 (1990).
Hurwitz小组的最新进展
Hurwitz群是(2,3,7)三角形群的任意非平凡有限商,即由元素x和y满足x 2 = y 3 = (xy)7 = 1所生成的任意非平凡有限群。每一个这样的群G都是G > 1属的紧Riemann曲面的共形自同构群,具有|G| = 84(G - 1)的性质,这是给定G属的最大可能阶。本文继作者在Bull的简要综述之后,对Hurwitz群的已知情况和相关问题进行了更新。阿米尔。数学。Soc.23(1990)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信