Akaike's model versus conventional spectral analysis as tools for analyzing multivariate clinical time series

T. Wada
{"title":"Akaike's model versus conventional spectral analysis as tools for analyzing multivariate clinical time series","authors":"T. Wada","doi":"10.1109/CBMSYS.1990.109444","DOIUrl":null,"url":null,"abstract":"Akaike's method of multivariate autoregressive (AR) modeling is applied to time-series analysis of clinical data. The present approach successfully demonstrated the peculiar power spectrum in various time-series data, which failed to be detected by FFT analysis because of abundant noise. Once AR coefficients are computed from the observed time-series of the relevant variables they can be used to describe the peculiar behavior of the system under study in two different ways: impulse response (IR) curves and Akaike's relative power contribution. The original program of Akaike is modified for exclusive uses in the analysis of clinical data.<<ETX>>","PeriodicalId":365366,"journal":{"name":"[1990] Proceedings. Third Annual IEEE Symposium on Computer-Based Medical Systems","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1990-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1990] Proceedings. Third Annual IEEE Symposium on Computer-Based Medical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMSYS.1990.109444","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Akaike's method of multivariate autoregressive (AR) modeling is applied to time-series analysis of clinical data. The present approach successfully demonstrated the peculiar power spectrum in various time-series data, which failed to be detected by FFT analysis because of abundant noise. Once AR coefficients are computed from the observed time-series of the relevant variables they can be used to describe the peculiar behavior of the system under study in two different ways: impulse response (IR) curves and Akaike's relative power contribution. The original program of Akaike is modified for exclusive uses in the analysis of clinical data.<>
赤池模型与传统光谱分析作为分析多变量临床时间序列的工具
将赤池的多变量自回归(AR)建模方法应用于临床数据的时间序列分析。该方法成功地证明了各种时间序列数据中由于大量噪声而无法被FFT分析检测到的特殊功率谱。一旦从观测到的相关变量的时间序列中计算出AR系数,它们就可以用两种不同的方式来描述所研究系统的特殊行为:脉冲响应(IR)曲线和赤池的相对功率贡献。赤池的原始程序经过修改,专门用于临床数据分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信