A. S. Mohamad, M. Amran M. Radzi, N. Mailah, Mohammad Lutfi Othman
{"title":"A cascaded multilevel inverter topology with only one bidirectional conducting switch","authors":"A. S. Mohamad, M. Amran M. Radzi, N. Mailah, Mohammad Lutfi Othman","doi":"10.1109/ICSIMA.2017.8311975","DOIUrl":null,"url":null,"abstract":"The most common multilevel inverter topology types are neutral point clamped or diode clamped inverter, flying capacitor inverter and cascaded H-bridge inverter. Among the three, the cascaded H-bridge inverter is becoming the most popular type of multilevel inverter as the world is moving towards renewable energy. The cascaded H-bridge has modular structure, so it can be easily adapted in multiple dc sources system such as photovoltaic systems. The main disadvantage of cascaded H-bridge inverter is it requires a high number of switches, particularly for a high number of output voltage levels design. Another major disadvantage is a high number of switches need to be turned on during cascaded H-bridge operation, thus accumulating voltage drops across the conducting switches before it reach the output terminals, resulting losses and reduced efficiency, especially for a high power installation. In this paper, an uninterrupted neutral line multilevel inverter topology with only one conducting bidirectional switch at any time of operation is proposed. A 41-level version of the proposed topology is constructed and tested in Matlab Simulink platform. The result shows that for a high output voltage levels and high power load, the proposed inverter has a very low output THD level and a minimum internal losses.","PeriodicalId":137841,"journal":{"name":"2017 IEEE 4th International Conference on Smart Instrumentation, Measurement and Application (ICSIMA)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 4th International Conference on Smart Instrumentation, Measurement and Application (ICSIMA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSIMA.2017.8311975","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The most common multilevel inverter topology types are neutral point clamped or diode clamped inverter, flying capacitor inverter and cascaded H-bridge inverter. Among the three, the cascaded H-bridge inverter is becoming the most popular type of multilevel inverter as the world is moving towards renewable energy. The cascaded H-bridge has modular structure, so it can be easily adapted in multiple dc sources system such as photovoltaic systems. The main disadvantage of cascaded H-bridge inverter is it requires a high number of switches, particularly for a high number of output voltage levels design. Another major disadvantage is a high number of switches need to be turned on during cascaded H-bridge operation, thus accumulating voltage drops across the conducting switches before it reach the output terminals, resulting losses and reduced efficiency, especially for a high power installation. In this paper, an uninterrupted neutral line multilevel inverter topology with only one conducting bidirectional switch at any time of operation is proposed. A 41-level version of the proposed topology is constructed and tested in Matlab Simulink platform. The result shows that for a high output voltage levels and high power load, the proposed inverter has a very low output THD level and a minimum internal losses.