GoogLeNet-based Diabetic-retinopathy-detection

Bojia Shi, Xiaoya Zhang, Zhuoyang Wang, Jiawei Song, Jiaxuan Han, Zaiye Zhang, Teoh Teik Toe
{"title":"GoogLeNet-based Diabetic-retinopathy-detection","authors":"Bojia Shi, Xiaoya Zhang, Zhuoyang Wang, Jiawei Song, Jiaxuan Han, Zaiye Zhang, Teoh Teik Toe","doi":"10.1109/icaci55529.2022.9837677","DOIUrl":null,"url":null,"abstract":"This paper is about a research in applying different neural networks for diabetic-retinopathy-detection. Respectively using basic CNNs, VGG16 and GoogLeNet trained on datasets from Aravind Eye Hospital in India including 8929 photos and validated on other 1114 photos. Experiment showed that GoogLeNet model could better identify diabetic retinopathy with a higher train accuracy around 97%, compared to the CNN model’s performance of 84% and VGG16’s 94%. Meanwhile, the test accuracy of GoogLeNet is 85%, relatively higher than other proposed models. The excellent performance of the GoogLeNet model shows its great potential and promises to be extended to replace ophthalmologists in the screening of patients in the future.","PeriodicalId":412347,"journal":{"name":"2022 14th International Conference on Advanced Computational Intelligence (ICACI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 14th International Conference on Advanced Computational Intelligence (ICACI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icaci55529.2022.9837677","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper is about a research in applying different neural networks for diabetic-retinopathy-detection. Respectively using basic CNNs, VGG16 and GoogLeNet trained on datasets from Aravind Eye Hospital in India including 8929 photos and validated on other 1114 photos. Experiment showed that GoogLeNet model could better identify diabetic retinopathy with a higher train accuracy around 97%, compared to the CNN model’s performance of 84% and VGG16’s 94%. Meanwhile, the test accuracy of GoogLeNet is 85%, relatively higher than other proposed models. The excellent performance of the GoogLeNet model shows its great potential and promises to be extended to replace ophthalmologists in the screening of patients in the future.
GoogLeNet-based Diabetic-retinopathy-detection
本文研究了不同神经网络在糖尿病视网膜病变检测中的应用。VGG16和GoogLeNet分别使用基本cnn对印度Aravind眼科医院8929张照片数据集进行训练,并对另外1114张照片进行验证。实验表明,GoogLeNet模型可以更好地识别糖尿病视网膜病变,训练准确率在97%左右,而CNN模型的准确率为84%,VGG16的准确率为94%。同时,GoogLeNet的测试准确率为85%,相对于其他提出的模型较高。GoogLeNet模型的优异表现显示了其巨大的潜力,并有望在未来扩展到取代眼科医生对患者的筛查。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信