G. Jagannathan, Krishnan Pillaipakkamnatt, R. Wright
{"title":"A Practical Differentially Private Random Decision Tree Classifier","authors":"G. Jagannathan, Krishnan Pillaipakkamnatt, R. Wright","doi":"10.1109/ICDMW.2009.93","DOIUrl":null,"url":null,"abstract":"In this paper, we study the problem of constructing private classifiers using decision trees, within the framework of differential privacy. We first construct privacy-preserving ID3 decision trees using differentially private sum queries. Our experiments show that for many data sets a reasonable privacy guarantee can only be obtained via this method at a steep cost of accuracy in predictions. We then present a differentially private decision tree ensemble algorithm using the random decision tree approach. We demonstrate experimentally that our approach yields good prediction accuracy even when the size of the datasets is small. We also present a differentially private algorithm for the situation in which new data is periodically appended to an existing database. Our experiments show that our differentially private random decision tree classifier handles data updates in a way that maintains the same level of privacy guarantee.","PeriodicalId":351078,"journal":{"name":"2009 IEEE International Conference on Data Mining Workshops","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"208","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Data Mining Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW.2009.93","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 208
Abstract
In this paper, we study the problem of constructing private classifiers using decision trees, within the framework of differential privacy. We first construct privacy-preserving ID3 decision trees using differentially private sum queries. Our experiments show that for many data sets a reasonable privacy guarantee can only be obtained via this method at a steep cost of accuracy in predictions. We then present a differentially private decision tree ensemble algorithm using the random decision tree approach. We demonstrate experimentally that our approach yields good prediction accuracy even when the size of the datasets is small. We also present a differentially private algorithm for the situation in which new data is periodically appended to an existing database. Our experiments show that our differentially private random decision tree classifier handles data updates in a way that maintains the same level of privacy guarantee.