A Practical Differentially Private Random Decision Tree Classifier

G. Jagannathan, Krishnan Pillaipakkamnatt, R. Wright
{"title":"A Practical Differentially Private Random Decision Tree Classifier","authors":"G. Jagannathan, Krishnan Pillaipakkamnatt, R. Wright","doi":"10.1109/ICDMW.2009.93","DOIUrl":null,"url":null,"abstract":"In this paper, we study the problem of constructing private classifiers using decision trees, within the framework of differential privacy. We first construct privacy-preserving ID3 decision trees using differentially private sum queries. Our experiments show that for many data sets a reasonable privacy guarantee can only be obtained via this method at a steep cost of accuracy in predictions. We then present a differentially private decision tree ensemble algorithm using the random decision tree approach. We demonstrate experimentally that our approach yields good prediction accuracy even when the size of the datasets is small. We also present a differentially private algorithm for the situation in which new data is periodically appended to an existing database. Our experiments show that our differentially private random decision tree classifier handles data updates in a way that maintains the same level of privacy guarantee.","PeriodicalId":351078,"journal":{"name":"2009 IEEE International Conference on Data Mining Workshops","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"208","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Data Mining Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW.2009.93","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 208

Abstract

In this paper, we study the problem of constructing private classifiers using decision trees, within the framework of differential privacy. We first construct privacy-preserving ID3 decision trees using differentially private sum queries. Our experiments show that for many data sets a reasonable privacy guarantee can only be obtained via this method at a steep cost of accuracy in predictions. We then present a differentially private decision tree ensemble algorithm using the random decision tree approach. We demonstrate experimentally that our approach yields good prediction accuracy even when the size of the datasets is small. We also present a differentially private algorithm for the situation in which new data is periodically appended to an existing database. Our experiments show that our differentially private random decision tree classifier handles data updates in a way that maintains the same level of privacy guarantee.
一种实用的差分私有随机决策树分类器
本文研究了在差分隐私框架下,利用决策树构造私有分类器的问题。我们首先使用差分私有和查询构造了保持隐私的ID3决策树。我们的实验表明,对于许多数据集,只有通过这种方法才能获得合理的隐私保证,而预测的准确性却要付出很大的代价。然后,我们提出了一种基于随机决策树方法的差分私有决策树集成算法。我们通过实验证明,即使在数据集很小的情况下,我们的方法也能产生良好的预测精度。我们还提出了一种差分私有算法,用于定期向现有数据库添加新数据的情况。我们的实验表明,我们的差分私有随机决策树分类器以保持相同级别的隐私保证的方式处理数据更新。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信