Geometallurgical ore characterization of the high-grade polymetallic unconformity-related uranium deposit

Andrew J. Kaczowka, T. K. Kyser, T. Kotzer, M. Leybourne, D. Layton-Matthews
{"title":"Geometallurgical ore characterization of the high-grade polymetallic unconformity-related uranium deposit","authors":"Andrew J. Kaczowka, T. K. Kyser, T. Kotzer, M. Leybourne, D. Layton-Matthews","doi":"10.3749/canmin.2000050","DOIUrl":null,"url":null,"abstract":"\n Cigar Lake is a polymetallic, unconformity-related uranium deposit with complex geochemistry and mineralogy located in the eastern Athabasca Basin of northern Saskatchewan, Canada. Variable concentrations and spatial distributions of elements of concern, such as As, Mo, Ni, Co, Se, and Zr, associated with the high-grade tetravalent uranium ores [UO2+x; U(SiO4)1–x(OH)4x] present unique mining, metallurgical, and environmental challenges. Sulfide and arsenide minerals have significant control over As, Mo, Ni, Co, and Se abundances and have properties that affect element of concern mobility, thus requiring consideration during mineral processing, mine-effluent water treatment, and long-term tailings management.\n The U-bearing (uraninite, coffinite) and metallic arsenide (nickeline, often called “niccolite” in the past), sulfarsenide (gersdorffite, cobaltite), and sulfide (chalcopyrite, pyrite, galena, bornite, chalcocite, sphalerite, pyrrhotite) minerals provide the main controls on the distributions of the elements of concern. Arsenic, Ni, and Co occur primarily in a reduced state as 1:1 molar ratio, Ni-Co:As, arsenide, and sulfarsenide minerals such as gersdorffite, nickeline, and cobaltite. Molybdenum occurs within molybdenite and uraninite. Selenium occurs within coffinite, sulfide, and sulfarsenide minerals. Zirconium is found within detrital zircon and coffinite.\n The spatial distribution and paragenesis of U-, As-, and S-bearing minerals are a result of the elemental composition, pH, and redox conditions of early formational and later meteoric fluids that formed and have modified the deposit through access along lithostratigraphic permeability and tectonic structures. Using the holistic geometallurgical paradigm presented here, the geochemistry and mineral chemistry at Cigar Lake can be used to optimize and reduce risk during long-term mine and mill planning.","PeriodicalId":134244,"journal":{"name":"The Canadian Mineralogist","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Canadian Mineralogist","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3749/canmin.2000050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Cigar Lake is a polymetallic, unconformity-related uranium deposit with complex geochemistry and mineralogy located in the eastern Athabasca Basin of northern Saskatchewan, Canada. Variable concentrations and spatial distributions of elements of concern, such as As, Mo, Ni, Co, Se, and Zr, associated with the high-grade tetravalent uranium ores [UO2+x; U(SiO4)1–x(OH)4x] present unique mining, metallurgical, and environmental challenges. Sulfide and arsenide minerals have significant control over As, Mo, Ni, Co, and Se abundances and have properties that affect element of concern mobility, thus requiring consideration during mineral processing, mine-effluent water treatment, and long-term tailings management. The U-bearing (uraninite, coffinite) and metallic arsenide (nickeline, often called “niccolite” in the past), sulfarsenide (gersdorffite, cobaltite), and sulfide (chalcopyrite, pyrite, galena, bornite, chalcocite, sphalerite, pyrrhotite) minerals provide the main controls on the distributions of the elements of concern. Arsenic, Ni, and Co occur primarily in a reduced state as 1:1 molar ratio, Ni-Co:As, arsenide, and sulfarsenide minerals such as gersdorffite, nickeline, and cobaltite. Molybdenum occurs within molybdenite and uraninite. Selenium occurs within coffinite, sulfide, and sulfarsenide minerals. Zirconium is found within detrital zircon and coffinite. The spatial distribution and paragenesis of U-, As-, and S-bearing minerals are a result of the elemental composition, pH, and redox conditions of early formational and later meteoric fluids that formed and have modified the deposit through access along lithostratigraphic permeability and tectonic structures. Using the holistic geometallurgical paradigm presented here, the geochemistry and mineral chemistry at Cigar Lake can be used to optimize and reduce risk during long-term mine and mill planning.
高品位多金属不整合型铀矿床成矿特征研究
雪茄湖位于加拿大萨斯喀彻温省北部阿萨巴斯卡盆地东部,是一个多金属、不整合型铀矿床,具有复杂的地球化学和矿物学特征。高品位四价铀矿石中as、Mo、Ni、Co、Se、Zr等重要元素的浓度变化及空间分布特征[UO2+x];U(SiO4) 1-x (OH)4x]带来了独特的采矿、冶金和环境挑战。硫化物和砷化物矿物对As、Mo、Ni、Co和Se丰度具有重要的控制作用,并具有影响关注点元素流动性的特性,因此在选矿、矿山废水处理和长期尾矿管理中都需要考虑。含铀矿物(铀矿、铀矿)和金属砷化物(镍矿,过去常称为“镍矿”)、硫化物(革氏多辉石、钴矿)和硫化物(黄铜矿、黄铁矿、方铅矿、斑铜矿、辉铜矿、闪锌矿、磁黄铁矿)是控制有关元素分布的主要矿物。砷、镍和钴主要以1:1摩尔比的还原态存在,Ni-Co: as、砷化物和硫化物矿物,如格斯多菲石、镍线和钴酸盐。钼存在于辉钼矿和铀矿中。硒存在于铀矿、硫化物和磺胺类矿物中。锆存在于碎屑锆石和coffinite中。U-、As-和s-矿物的空间分布和共生是早期和晚期大气流体的元素组成、pH值和氧化还原条件的结果,这些流体沿着岩石地层渗透率和构造构造通过通道形成并改造了矿床。利用本文提出的整体地学范式,雪茄湖的地球化学和矿物化学可用于优化和降低长期矿山和工厂规划中的风险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信