Evolutionary algorithm with convergence speed controller for automated software test data generation problem

Fangqing Liu, Han Huang, Z. Hao
{"title":"Evolutionary algorithm with convergence speed controller for automated software test data generation problem","authors":"Fangqing Liu, Han Huang, Z. Hao","doi":"10.1109/CEC.2017.7969400","DOIUrl":null,"url":null,"abstract":"Software testing is an important process of software development. One of the challenges in testing software is to generate test cases which help to reveal errors. Automated software test data generation problem is hard because it needs to search the whole feasible area to find test cases covering all possible paths under acceptable time consumption. In this paper, evolutionary algorithm with convergence speed controller (EA-CSC) is presented for using the least test case overhead in solving automated test case generation problem. EA-CSC is designed as a framework which have fast convergence speed and capability to jump out of the local optimal solution over a range of problems. There are two critical steps in EA-CSC. The adaptive step size searching method accelerates the convergence speed of EA. The mutation operator can disrupt the population distribution and slows down the convergence process of EA. Moreover, the EA-CSC results are compared to the algorithms tested on the same benchmark problems, showing strong competitive.","PeriodicalId":335123,"journal":{"name":"2017 IEEE Congress on Evolutionary Computation (CEC)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Congress on Evolutionary Computation (CEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2017.7969400","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Software testing is an important process of software development. One of the challenges in testing software is to generate test cases which help to reveal errors. Automated software test data generation problem is hard because it needs to search the whole feasible area to find test cases covering all possible paths under acceptable time consumption. In this paper, evolutionary algorithm with convergence speed controller (EA-CSC) is presented for using the least test case overhead in solving automated test case generation problem. EA-CSC is designed as a framework which have fast convergence speed and capability to jump out of the local optimal solution over a range of problems. There are two critical steps in EA-CSC. The adaptive step size searching method accelerates the convergence speed of EA. The mutation operator can disrupt the population distribution and slows down the convergence process of EA. Moreover, the EA-CSC results are compared to the algorithms tested on the same benchmark problems, showing strong competitive.
基于收敛速度控制器的软件测试数据自动生成进化算法
软件测试是软件开发的一个重要过程。测试软件的挑战之一是生成有助于揭示错误的测试用例。自动化的软件测试数据生成问题是困难的,因为它需要在可接受的时间消耗下搜索整个可行区域,以找到覆盖所有可能路径的测试用例。本文提出了带收敛速度控制器的进化算法(EA-CSC),以最小的测试用例开销来解决自动化测试用例生成问题。EA-CSC被设计成一个收敛速度快、能够在一系列问题上跳出局部最优解的框架。EA-CSC有两个关键步骤。自适应步长搜索方法加快了EA的收敛速度,突变算子破坏了种群分布,减缓了EA的收敛过程。此外,将EA- csc结果与同一基准问题上测试的算法进行了比较,显示出较强的竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信