Statistical physics of neural systems with non-additive dendritic coupling

David Breuer, M. Timme, Raoul-Martin Memmesheimer
{"title":"Statistical physics of neural systems with non-additive dendritic coupling","authors":"David Breuer, M. Timme, Raoul-Martin Memmesheimer","doi":"10.1103/PhysRevX.4.011053","DOIUrl":null,"url":null,"abstract":"How neurons process their inputs crucially determines the dynamics of biological and artificial neural networks. In such neural and neural-like systems, synaptic input is typically considered to be merely transmitted linearly or sublinearly by the dendritic compartments. Yet, single-neuron experiments report pronounced supralinear dendritic summation of sufficiently synchronous and spatially close-by inputs. Here, we provide a statistical physics approach to study the impact of such non-additive dendritic processing on single neuron responses and the performance of associative memory tasks in artificial neural networks. First, we compute the effect of random input to a neuron incorporating nonlinear dendrites. This approach is independent of the details of the neuronal dynamics. Second, we use those results to study the impact of dendritic nonlinearities on the network dynamics in a paradigmatic model for associative memory, both numerically and analytically. We find that dendritic nonlinearities maintain network convergence and increase the robustness of memory performance against noise. Interestingly, an intermediate number of dendritic branches is optimal for memory functionality.","PeriodicalId":360136,"journal":{"name":"arXiv: Biological Physics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Biological Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PhysRevX.4.011053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

How neurons process their inputs crucially determines the dynamics of biological and artificial neural networks. In such neural and neural-like systems, synaptic input is typically considered to be merely transmitted linearly or sublinearly by the dendritic compartments. Yet, single-neuron experiments report pronounced supralinear dendritic summation of sufficiently synchronous and spatially close-by inputs. Here, we provide a statistical physics approach to study the impact of such non-additive dendritic processing on single neuron responses and the performance of associative memory tasks in artificial neural networks. First, we compute the effect of random input to a neuron incorporating nonlinear dendrites. This approach is independent of the details of the neuronal dynamics. Second, we use those results to study the impact of dendritic nonlinearities on the network dynamics in a paradigmatic model for associative memory, both numerically and analytically. We find that dendritic nonlinearities maintain network convergence and increase the robustness of memory performance against noise. Interestingly, an intermediate number of dendritic branches is optimal for memory functionality.
具有非加性树突耦合的神经系统的统计物理
神经元如何处理它们的输入至关重要地决定了生物和人工神经网络的动态。在这样的神经和类神经系统中,突触输入通常被认为仅仅是由树突隔室线性或亚线性传递的。然而,单神经元实验报告了明显的超线性树突和足够同步和空间相近的输入。在这里,我们提供了一种统计物理方法来研究这种非加性树突处理对人工神经网络中单个神经元反应和联想记忆任务性能的影响。首先,我们计算随机输入对包含非线性树突的神经元的影响。这种方法与神经元动力学的细节无关。其次,我们使用这些结果来研究树突非线性对联想记忆的范式模型中网络动力学的影响,包括数值和分析。我们发现树状非线性保持了网络的收敛性,并增加了记忆性能对噪声的鲁棒性。有趣的是,中等数量的树突分支对于记忆功能来说是最佳的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信