Learning solar flare forecasting model from magnetograms

Xin Huang, Huaning Wang, Long Xu, W. Sun
{"title":"Learning solar flare forecasting model from magnetograms","authors":"Xin Huang, Huaning Wang, Long Xu, W. Sun","doi":"10.1109/VCIP.2017.8305095","DOIUrl":null,"url":null,"abstract":"Solar flare is one type of violent eruptions from the Sun. Its effects almost immediately arrive to the near-Earth environment, so it is crucial to forecast solar flares in space weather. So far, the physical mechanisms of solar flares are not yet clear, hence we learn a solar flare forecasting model from the historical observational magnetograms by using the deep learning method. Instead of designing the feature extractor by the solar physicist in the traditional solar flare forecasting model, the proposed forecasting model can automatically learn features from input raw data, and followed by a classifier for foretasting from the learned features. The experimental results demonstrate that the proposed model can achieve better performance of solar flare forecasting comparing to traditional solar flare forecasting models.","PeriodicalId":423636,"journal":{"name":"2017 IEEE Visual Communications and Image Processing (VCIP)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Visual Communications and Image Processing (VCIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VCIP.2017.8305095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Solar flare is one type of violent eruptions from the Sun. Its effects almost immediately arrive to the near-Earth environment, so it is crucial to forecast solar flares in space weather. So far, the physical mechanisms of solar flares are not yet clear, hence we learn a solar flare forecasting model from the historical observational magnetograms by using the deep learning method. Instead of designing the feature extractor by the solar physicist in the traditional solar flare forecasting model, the proposed forecasting model can automatically learn features from input raw data, and followed by a classifier for foretasting from the learned features. The experimental results demonstrate that the proposed model can achieve better performance of solar flare forecasting comparing to traditional solar flare forecasting models.
利用磁图学习太阳耀斑预报模型
太阳耀斑是太阳猛烈喷发的一种。它的影响几乎会立即到达近地环境,因此在太空天气中预测太阳耀斑是至关重要的。迄今为止,太阳耀斑的物理机制尚不清楚,因此我们利用深度学习方法从历史观测磁图中学习太阳耀斑预测模型。与传统的太阳耀斑预测模型中由太阳物理学家设计特征提取器不同,本文提出的预测模型可以从输入的原始数据中自动学习特征,然后通过分类器对学习到的特征进行预测。实验结果表明,与传统的太阳耀斑预测模型相比,该模型具有更好的预测效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信