Adjacent graph-based block kernel nonnegative matrix factorization

Wensheng Chen, Qian Wang, Binbin Pan
{"title":"Adjacent graph-based block kernel nonnegative matrix factorization","authors":"Wensheng Chen, Qian Wang, Binbin Pan","doi":"10.1109/SPAC.2017.8304265","DOIUrl":null,"url":null,"abstract":"Using block technique and graph theory, we present a variant of nonnegative matrix factorization (NMF) with high performance for face recognition. We establish a novel objective function in kernel space by the class label information and local scatter information. The class label information is implied in the block decomposition technique and intra-class covariance matrix, while the local scatter information is determined by the adjacent graph matrix. We theoretically construct an auxiliary function related to the objective function and then derive the iterative formulae of our method by solving the stable point of the auxiliary function. The property of auxiliary function shows that our algorithm is convergent. Finally, empirical results show that our method is effective.","PeriodicalId":161647,"journal":{"name":"2017 International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPAC.2017.8304265","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Using block technique and graph theory, we present a variant of nonnegative matrix factorization (NMF) with high performance for face recognition. We establish a novel objective function in kernel space by the class label information and local scatter information. The class label information is implied in the block decomposition technique and intra-class covariance matrix, while the local scatter information is determined by the adjacent graph matrix. We theoretically construct an auxiliary function related to the objective function and then derive the iterative formulae of our method by solving the stable point of the auxiliary function. The property of auxiliary function shows that our algorithm is convergent. Finally, empirical results show that our method is effective.
基于邻接图的块核非负矩阵分解
利用分块技术和图论,提出了一种高性能的非负矩阵分解(NMF)人脸识别方法。我们利用类标号信息和局部散点信息在核空间中建立了一个新的目标函数。类标号信息隐含在分块分解技术和类内协方差矩阵中,局部散点信息由相邻图矩阵确定。我们从理论上构造一个与目标函数相关的辅助函数,然后通过求解辅助函数的稳定点推导出本方法的迭代公式。辅助函数的性质表明该算法是收敛的。最后,实证结果表明该方法是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信