On hybrid genetic models for hard problems

M. Carpentieri, Alessandro Pappalardo, Domenica Sileo, G. Summa
{"title":"On hybrid genetic models for hard problems","authors":"M. Carpentieri, Alessandro Pappalardo, Domenica Sileo, G. Summa","doi":"10.1109/FUZZY.2009.5277184","DOIUrl":null,"url":null,"abstract":"We review some main theoretical results about genetic algorithms. We shall take into account some central open problems related with the combinatorial optimization and neural networks theory. We exhibit experimental evidence suggesting that several crossover techniques are not, by themselves, eilective in solving hard problems ii compared with traditional combinatorial optimization techniques. Eventually, we propose a hybrid approach based on the idea oí' combining the action oí crossover, rotation operators and short deterministic simulations oí noiidc tor minis tic searches that are promising to be eilective for hard problems (according to the polynomial reduction theory).","PeriodicalId":117895,"journal":{"name":"2009 IEEE International Conference on Fuzzy Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2009-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Fuzzy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZY.2009.5277184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We review some main theoretical results about genetic algorithms. We shall take into account some central open problems related with the combinatorial optimization and neural networks theory. We exhibit experimental evidence suggesting that several crossover techniques are not, by themselves, eilective in solving hard problems ii compared with traditional combinatorial optimization techniques. Eventually, we propose a hybrid approach based on the idea oí' combining the action oí crossover, rotation operators and short deterministic simulations oí noiidc tor minis tic searches that are promising to be eilective for hard problems (according to the polynomial reduction theory).
疑难问题的杂交遗传模型
本文综述了遗传算法的一些主要理论成果。我们将考虑与组合优化和神经网络理论有关的一些中心开放问题。我们展示的实验证据表明,与传统的组合优化技术相比,几种交叉技术本身并不是解决难题的选择性方法。最后,我们提出了一种混合方法,该方法基于oí'结合动作oí交叉,旋转算子和短确定性模拟oí noiidc的想法,用于小型tic搜索,有望对困难问题进行选择性(根据多项式约简理论)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信