Space shuttle UHF communications performance evaluation

S. Hwu, Y. Loh, T. Tran, Q. D. Kroll, C. Sham
{"title":"Space shuttle UHF communications performance evaluation","authors":"S. Hwu, Y. Loh, T. Tran, Q. D. Kroll, C. Sham","doi":"10.1109/DASC.2004.1390853","DOIUrl":null,"url":null,"abstract":"An extension boom is to be installed on the starboard side of the Space Shuttle orbiter (SSO) payload bay for thermal tile inspection and repairing. As a result, the Space Shuttle payload bay ultra high frequency (UHF) antenna has been under the boom. This study is to evaluate the space shuttle UHF communication performance for antenna at a suitable new location. To ensure the communication coverage performance at the proposed new locations, the link margin between the UHF payload bay antenna and extravehicular activity (EVA) astronauts (SSO-EVA) in the upper hemisphere at a range distance of 160 meters from the payload bay antenna was analyzed. The communication performance between Space Shuttle orbiter and International Space Station (SSO-ISS) during rendezvous was also investigated. The multipath effects from payload bay structures surrounding the payload bay antenna were analyzed. The computer simulation tool based on the geometrical theory of diffraction method (GTD) was used to compute the signal strengths. The total field strength was obtained by summing the direct fields from the antennas and the reflected and diffracted fields from the surrounding structures. The computed signal strengths were compared to the signal strength corresponding to the 0 dB link margin. Based on the results obtained in this study, communication coverage for SSO-EVA and SSO-ISS communication links was determined for the proposed payload bay antenna UHF locations. The radio frequency (RF) radiation to the orbiter docking system (ODS) pyros, the payload bay avionics, and the shuttle remote manipulator system (SRMS) from the new proposed UHF antenna location was also investigated to ensure the EMC/EMI compliances.","PeriodicalId":422463,"journal":{"name":"The 23rd Digital Avionics Systems Conference (IEEE Cat. No.04CH37576)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 23rd Digital Avionics Systems Conference (IEEE Cat. No.04CH37576)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DASC.2004.1390853","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

An extension boom is to be installed on the starboard side of the Space Shuttle orbiter (SSO) payload bay for thermal tile inspection and repairing. As a result, the Space Shuttle payload bay ultra high frequency (UHF) antenna has been under the boom. This study is to evaluate the space shuttle UHF communication performance for antenna at a suitable new location. To ensure the communication coverage performance at the proposed new locations, the link margin between the UHF payload bay antenna and extravehicular activity (EVA) astronauts (SSO-EVA) in the upper hemisphere at a range distance of 160 meters from the payload bay antenna was analyzed. The communication performance between Space Shuttle orbiter and International Space Station (SSO-ISS) during rendezvous was also investigated. The multipath effects from payload bay structures surrounding the payload bay antenna were analyzed. The computer simulation tool based on the geometrical theory of diffraction method (GTD) was used to compute the signal strengths. The total field strength was obtained by summing the direct fields from the antennas and the reflected and diffracted fields from the surrounding structures. The computed signal strengths were compared to the signal strength corresponding to the 0 dB link margin. Based on the results obtained in this study, communication coverage for SSO-EVA and SSO-ISS communication links was determined for the proposed payload bay antenna UHF locations. The radio frequency (RF) radiation to the orbiter docking system (ODS) pyros, the payload bay avionics, and the shuttle remote manipulator system (SRMS) from the new proposed UHF antenna location was also investigated to ensure the EMC/EMI compliances.
航天飞机超高频通信性能评估
在航天飞机轨道飞行器(SSO)有效载荷舱的右舷将安装一个延伸臂,用于热瓦检查和修复。因此,航天飞机有效载荷舱的超高频(UHF)天线一直处于吊臂之下。本研究旨在评估航天飞机天线在合适的新位置上的超高频通信性能。为了保证新位置的通信覆盖性能,分析了超高频有效载荷舱天线与上半球距有效载荷舱天线160米范围内的舱外活动(SSO-EVA)航天员之间的链路裕度。研究了航天飞机轨道器与国际空间站(SSO-ISS)交会过程中的通信性能。分析了载荷舱天线周围结构的多径效应。利用基于衍射法几何理论的计算机仿真工具计算信号强度。总场强是由天线的直接场和周围结构的反射场和衍射场相加得到的。将计算的信号强度与对应于0 dB链路余量的信号强度进行比较。根据研究结果,确定了有效载荷舱天线UHF位置下SSO-EVA和SSO-ISS通信链路的通信覆盖范围。研究了UHF天线位置对轨道飞行器对接系统(ODS)、有效载荷舱航空电子设备和航天飞机远程操纵系统(SRMS)的射频辐射,以确保电磁兼容。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信