Structuring complex data using representativeness graphs

Frédéric Blanchard, A. A. Younes, M. Herbin
{"title":"Structuring complex data using representativeness graphs","authors":"Frédéric Blanchard, A. A. Younes, M. Herbin","doi":"10.1109/I4CS.2014.6860561","DOIUrl":null,"url":null,"abstract":"This contribution addresses the problem of extracting some representative data from complex datasets and connecting them in a directed forest. First we define a degree of representativeness (DoR) based on the Borda aggregation procedure. Secondly we present a method to connect pairwise data using neighborhoods and the DoR as an objective function. We then present three case studies as a proof of concept: unsupervised grouping of binary images, analysis of co-authorships in a research team and structuration of a medical patient-oriented database for a case-based reasoning use.","PeriodicalId":226884,"journal":{"name":"2014 14th International Conference on Innovations for Community Services (I4CS)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 14th International Conference on Innovations for Community Services (I4CS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/I4CS.2014.6860561","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This contribution addresses the problem of extracting some representative data from complex datasets and connecting them in a directed forest. First we define a degree of representativeness (DoR) based on the Borda aggregation procedure. Secondly we present a method to connect pairwise data using neighborhoods and the DoR as an objective function. We then present three case studies as a proof of concept: unsupervised grouping of binary images, analysis of co-authorships in a research team and structuration of a medical patient-oriented database for a case-based reasoning use.
使用代表性图构建复杂数据
该贡献解决了从复杂数据集中提取一些代表性数据并将它们连接到有向森林中的问题。首先,我们基于Borda聚合过程定义了代表性度(DoR)。其次,我们提出了一种以邻域和DoR作为目标函数来连接成对数据的方法。然后,我们提出了三个案例研究作为概念证明:二值图像的无监督分组,研究团队中共同作者的分析以及基于案例推理使用的面向患者的医疗数据库的结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信