EFFICIENT PARALLEL RANGE SEARCHING AND PARTITIONING ALGORITHMS*

A. Datta
{"title":"EFFICIENT PARALLEL RANGE SEARCHING AND PARTITIONING ALGORITHMS*","authors":"A. Datta","doi":"10.1080/01495730108935276","DOIUrl":null,"url":null,"abstract":"We present an optimal parallel construction of the range tree data structure and use this construction to solve several geometric partitioning problems. In the range tree, we show how to perform a count-mode orthogonal range query in 0(log n) time by a single processor and a report mode orthogonal range query in 0(log n) time using 0(1 + log n) processors, where k is the number of points inside the query range. We consider partitioning problems of the following nature. Given a planar point set S (∣S∣ = ri) a measure μacting on 5 and a pair of values μ1 and μ2,the task is to find a partition of S into two components S1 and S2 (S = S1U S2) such that μ(S1) =μ1 for i=1, 2. We consider several measures like diameter under L∞ and l1 metric; area, perimeter of the smallest enclosing axes-parallel rectangle; and the side length of the smallest enclosing axes-parallel square. All our parallel algorithms foi partitioning problems run in 0(log n) time using 0(n) processors. Our algorithms are designed for the CREW PRAM model of parallel computation.","PeriodicalId":406098,"journal":{"name":"Parallel Algorithms and Applications","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Parallel Algorithms and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/01495730108935276","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We present an optimal parallel construction of the range tree data structure and use this construction to solve several geometric partitioning problems. In the range tree, we show how to perform a count-mode orthogonal range query in 0(log n) time by a single processor and a report mode orthogonal range query in 0(log n) time using 0(1 + log n) processors, where k is the number of points inside the query range. We consider partitioning problems of the following nature. Given a planar point set S (∣S∣ = ri) a measure μacting on 5 and a pair of values μ1 and μ2,the task is to find a partition of S into two components S1 and S2 (S = S1U S2) such that μ(S1) =μ1 for i=1, 2. We consider several measures like diameter under L∞ and l1 metric; area, perimeter of the smallest enclosing axes-parallel rectangle; and the side length of the smallest enclosing axes-parallel square. All our parallel algorithms foi partitioning problems run in 0(log n) time using 0(n) processors. Our algorithms are designed for the CREW PRAM model of parallel computation.
高效的并行范围搜索和分区算法*
提出了一种范围树数据结构的最优并行结构,并利用该结构解决了若干几何划分问题。在范围树中,我们展示了如何使用单个处理器在0(log n)时间内执行计数模式正交范围查询,以及如何使用0(1 + log n)个处理器在0(log n)时间内执行报告模式正交范围查询,其中k是查询范围内的点数。我们考虑下列性质的划分问题。给定一个平面点集S(∣S∣= ri),一个作用于5的测度μ和一对值μ1和μ2,任务是求出S划分为两个分量S1和S2 (S = S1U S2),使得当i= 1,2时μ(S1) =μ1。我们考虑了L∞下的直径和l1度规等测度;面积,最小围轴的周长-平行矩形;最小围轴的边长——平行正方形。我们所有用于分区问题的并行算法使用0(n)个处理器在0(log n)时间内运行。我们的算法是针对并行计算的CREW PRAM模型设计的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信