Numerical Experiments with a Primal-Dual Algorithm for Solving Quadratic Problems

Derkaoui Orkia, A. Lehireche
{"title":"Numerical Experiments with a Primal-Dual Algorithm for Solving Quadratic Problems","authors":"Derkaoui Orkia, A. Lehireche","doi":"10.5220/0005813802040209","DOIUrl":null,"url":null,"abstract":"This paper provides a new variant of primal-dual interior-point method for solving a SemiDefinite Program (SDP). We use the PDIPA (primal-dual interior-point algorithm) solver entitled SDPA (SemiDefinite Programming Algorithm). This last uses a classical Newton descent method to compute the predictorcorrector search direction. The difficulty is in the computation of this line-search, it induces high computational costs. Here, instead we adopt a new procedure to implement another way to determine the step-size along the direction which is more efficient than classical line searches. This procedure consists in the computation of the step size in order to give a significant decrease along the descent line direction with a minimum cost. With this procedure we obtain à new variant of SDPA. The comparison of the results obtained with the classic SDPA and our new variant is promising.","PeriodicalId":235376,"journal":{"name":"International Conference on Operations Research and Enterprise Systems","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Operations Research and Enterprise Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0005813802040209","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper provides a new variant of primal-dual interior-point method for solving a SemiDefinite Program (SDP). We use the PDIPA (primal-dual interior-point algorithm) solver entitled SDPA (SemiDefinite Programming Algorithm). This last uses a classical Newton descent method to compute the predictorcorrector search direction. The difficulty is in the computation of this line-search, it induces high computational costs. Here, instead we adopt a new procedure to implement another way to determine the step-size along the direction which is more efficient than classical line searches. This procedure consists in the computation of the step size in order to give a significant decrease along the descent line direction with a minimum cost. With this procedure we obtain à new variant of SDPA. The comparison of the results obtained with the classic SDPA and our new variant is promising.
求解二次问题的原对偶算法的数值实验
本文给出了求解半定规划问题的一种新的原始-对偶内点法。我们使用PDIPA(原始对偶内点算法)求解器,称为SDPA(半确定规划算法)。最后使用经典的牛顿下降法计算预测校正器的搜索方向。该方法的难点在于计算量大,计算量大。在这里,我们采用一种新的程序来实现另一种方法来确定沿方向的步长,这种方法比传统的直线搜索更有效。这个过程包括计算步长,以便以最小的代价沿着下降线方向给出显著的减少。通过这种方法,我们得到了SDPA的一个新的变体。与经典的SDPA和我们的新变体得到的结果比较是有希望的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信