{"title":"Isoscape Analysis for Elucidating Relationships between Soil Redistribution and Soil Carbon Dynamics","authors":"Xia Li, G. McCarty, Sangchul Lee","doi":"10.5772/INTECHOPEN.88952","DOIUrl":null,"url":null,"abstract":"Isotopic tracers are useful for assessing linkages between soil movement and soil carbon dynamics in landscapes. Analyses of isotopes and comparison of isoscape (isotopic landscape) with observational data have been employed to investigate spatial distributions of isotopes, to test efficiencies of isotopic models, and to examine soil redistribution patterns and C dynamics. This chapter reviewed the application of natural (7Be, 210Pb) and anthropogenic fallout radionuclides (137Cs, 239,240Pu), and C isotopes (12,13,14C) in understanding mechanisms of soil redistribution and sedimentation. The chapter was organized to cover the formation, sources, and transport of these isotopes; how they are distributed and related to soil redistribution on C dynamics; and importance of their distribution (isoscapes) on investigating soil properties. We also provided a case study to demonstrate the feasibility of applying isotopes and isoscape modeling for understanding soil property variability in response to anthropogenic disturbance in a low-relief cropland field. Results demonstrated advantages of using 137Cs and C isotopic signature (δ13C) to trace soil movements and C dynamics. Topography-based 137Cs and C isoscape models were developed using light detection and ranging data (LiDAR) derived topographic metrics. The models successfully simulated the spatial patterns of 137Cs inventory and δ13C over an agricultural landscape and can benefit soil sedimentation and C dynamic studies in areas with limited observations.","PeriodicalId":198486,"journal":{"name":"Isotopes Applications in Earth Sciences","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Isotopes Applications in Earth Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.88952","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Isotopic tracers are useful for assessing linkages between soil movement and soil carbon dynamics in landscapes. Analyses of isotopes and comparison of isoscape (isotopic landscape) with observational data have been employed to investigate spatial distributions of isotopes, to test efficiencies of isotopic models, and to examine soil redistribution patterns and C dynamics. This chapter reviewed the application of natural (7Be, 210Pb) and anthropogenic fallout radionuclides (137Cs, 239,240Pu), and C isotopes (12,13,14C) in understanding mechanisms of soil redistribution and sedimentation. The chapter was organized to cover the formation, sources, and transport of these isotopes; how they are distributed and related to soil redistribution on C dynamics; and importance of their distribution (isoscapes) on investigating soil properties. We also provided a case study to demonstrate the feasibility of applying isotopes and isoscape modeling for understanding soil property variability in response to anthropogenic disturbance in a low-relief cropland field. Results demonstrated advantages of using 137Cs and C isotopic signature (δ13C) to trace soil movements and C dynamics. Topography-based 137Cs and C isoscape models were developed using light detection and ranging data (LiDAR) derived topographic metrics. The models successfully simulated the spatial patterns of 137Cs inventory and δ13C over an agricultural landscape and can benefit soil sedimentation and C dynamic studies in areas with limited observations.