{"title":"Application of LES/PDF and RANS/PDF approaches for simulation of spray combustion","authors":"Duaa Yaseen Haran, A. Majhool","doi":"10.30772/qjes.v14i2.752","DOIUrl":null,"url":null,"abstract":"This paper is addressing of a coupling Large-eddy simulation (LES) and RANS turbulence models with mixture fraction/probability density function as a combustion model. The two models have been implemented to simulate ethanol-air spray combustion. The gas phase is described with the Eulerian approach while the liquid phase is designed using a Lagrangian framework. The LES/PDF approach is obtained statistically. The sub-grid scale energy equation is used with the LES/PDF approach. The numerical results are validated with experimental data. Both LES/PDF and RANS/PDF approaches are compared with the experimental data. The LES/PDF approach shows a good agreement in predicting the average gas temperature compared with RANS/PDF approach. The LES/PDF shows a better prediction of both turbulence intensity profiles and the vortices which are generated in the turbulent flow in comparison with the RANS/PDF approach.","PeriodicalId":227530,"journal":{"name":"Al-Qadisiyah Journal for Engineering Sciences","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Al-Qadisiyah Journal for Engineering Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30772/qjes.v14i2.752","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper is addressing of a coupling Large-eddy simulation (LES) and RANS turbulence models with mixture fraction/probability density function as a combustion model. The two models have been implemented to simulate ethanol-air spray combustion. The gas phase is described with the Eulerian approach while the liquid phase is designed using a Lagrangian framework. The LES/PDF approach is obtained statistically. The sub-grid scale energy equation is used with the LES/PDF approach. The numerical results are validated with experimental data. Both LES/PDF and RANS/PDF approaches are compared with the experimental data. The LES/PDF approach shows a good agreement in predicting the average gas temperature compared with RANS/PDF approach. The LES/PDF shows a better prediction of both turbulence intensity profiles and the vortices which are generated in the turbulent flow in comparison with the RANS/PDF approach.