An efficient approach to implement dynamic batch means estimators in simulation output analysis

Mingchang Chih, W. Song
{"title":"An efficient approach to implement dynamic batch means estimators in simulation output analysis","authors":"Mingchang Chih, W. Song","doi":"10.1080/10170669.2012.665212","DOIUrl":null,"url":null,"abstract":"Estimating the variance of the sample mean is a classical problem of stochastic simulation. Traditional batch means estimators require specification of the simulation run length a priori. Dynamic batch means (DBM) is a new approach to implement the traditional batch means in fixed memory by dynamically changing both batch size and number of batches without the knowledge of the simulation run length. This article further improves the DBM by considering small storage requirements and fast computation. The proposed algorithm is useful when the simulation run length is random and extremely long in simulation models.","PeriodicalId":369256,"journal":{"name":"Journal of The Chinese Institute of Industrial Engineers","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Chinese Institute of Industrial Engineers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10170669.2012.665212","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Estimating the variance of the sample mean is a classical problem of stochastic simulation. Traditional batch means estimators require specification of the simulation run length a priori. Dynamic batch means (DBM) is a new approach to implement the traditional batch means in fixed memory by dynamically changing both batch size and number of batches without the knowledge of the simulation run length. This article further improves the DBM by considering small storage requirements and fast computation. The proposed algorithm is useful when the simulation run length is random and extremely long in simulation models.
在仿真输出分析中实现动态批均值估计的一种有效方法
样本均值方差的估计是随机模拟中的一个经典问题。传统的批量均值估计器需要事先指定模拟运行长度。动态批处理方法(DBM)是在不知道仿真运行长度的情况下,通过动态改变批大小和批数量,在固定内存中实现传统批处理方法的一种新方法。本文通过考虑较小的存储需求和快速的计算来进一步改进DBM。该算法适用于仿真模型中运行长度随机且非常长的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信