Analysis of Visualization Techniques for Malware Detection

Anastasia Kartel, E. Novikova, A. Volosiuk
{"title":"Analysis of Visualization Techniques for Malware Detection","authors":"Anastasia Kartel, E. Novikova, A. Volosiuk","doi":"10.1109/EIConRus49466.2020.9038910","DOIUrl":null,"url":null,"abstract":"Due to the steady growth of various sophisticated types of malware, different malware analysis systems are becoming more and more demanded. While there are various automatic approaches available to identify and detect malware, the malware analysis is still time-consuming process. The visualization-driven techniques may significantly increase the efficiency of the malware analysis process by involving human visual system which is a powerful pattern seeker. In this paper the authors reviewed different visualization methods, examined their features and tasks solved with their help. The paper presents the most commonly used approaches and discusses open challenges in malware visual analytics.","PeriodicalId":333365,"journal":{"name":"2020 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EIConRus49466.2020.9038910","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Due to the steady growth of various sophisticated types of malware, different malware analysis systems are becoming more and more demanded. While there are various automatic approaches available to identify and detect malware, the malware analysis is still time-consuming process. The visualization-driven techniques may significantly increase the efficiency of the malware analysis process by involving human visual system which is a powerful pattern seeker. In this paper the authors reviewed different visualization methods, examined their features and tasks solved with their help. The paper presents the most commonly used approaches and discusses open challenges in malware visual analytics.
恶意软件检测可视化技术分析
由于各种复杂类型的恶意软件的稳步增长,对不同的恶意软件分析系统的需求越来越大。虽然有各种自动方法可用于识别和检测恶意软件,但恶意软件分析仍然是一个耗时的过程。可视化驱动技术利用人类视觉系统这一强大的模式搜索器,可以显著提高恶意软件分析过程的效率。本文综述了不同的可视化方法,分析了它们的特点以及利用它们解决的任务。本文介绍了最常用的方法,并讨论了恶意软件可视化分析中存在的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信