Improving Semi-Supervised End-To-End Automatic Speech Recognition Using Cyclegan and Inter-Domain Losses

C. Li, Ngoc Thang Vu
{"title":"Improving Semi-Supervised End-To-End Automatic Speech Recognition Using Cyclegan and Inter-Domain Losses","authors":"C. Li, Ngoc Thang Vu","doi":"10.1109/SLT54892.2023.10022448","DOIUrl":null,"url":null,"abstract":"We propose a novel method that combines CycleGAN and inter-domain losses for semi-supervised end-to-end automatic speech recognition. Inter-domain loss targets the extraction of an intermediate shared representation of speech and text inputs using a shared network. CycleGAN uses cycle-consistent loss and the identity mapping loss to preserve relevant characteristics of the input feature after converting from one domain to another. As such, both approaches are suitable to train end-to-end models on unpaired speech-text inputs. In this paper, we exploit the advantages from both inter-domain loss and CycleGAN to achieve better shared representation of unpaired speech and text inputs and thus improve the speech-to-text mapping. Our experimental results on the WSJ eval92 and Voxforge (non English) show $8\\sim 8.5\\%$ character error rate reduction over the baseline, and the results on LibriSpeech test_clean also show noticeable improvement.","PeriodicalId":352002,"journal":{"name":"2022 IEEE Spoken Language Technology Workshop (SLT)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Spoken Language Technology Workshop (SLT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT54892.2023.10022448","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We propose a novel method that combines CycleGAN and inter-domain losses for semi-supervised end-to-end automatic speech recognition. Inter-domain loss targets the extraction of an intermediate shared representation of speech and text inputs using a shared network. CycleGAN uses cycle-consistent loss and the identity mapping loss to preserve relevant characteristics of the input feature after converting from one domain to another. As such, both approaches are suitable to train end-to-end models on unpaired speech-text inputs. In this paper, we exploit the advantages from both inter-domain loss and CycleGAN to achieve better shared representation of unpaired speech and text inputs and thus improve the speech-to-text mapping. Our experimental results on the WSJ eval92 and Voxforge (non English) show $8\sim 8.5\%$ character error rate reduction over the baseline, and the results on LibriSpeech test_clean also show noticeable improvement.
利用循环gan和域间损失改进半监督端到端自动语音识别
我们提出了一种结合CycleGAN和域间损失的半监督端到端自动语音识别方法。域间损失的目标是使用共享网络提取语音和文本输入的中间共享表示。CycleGAN在从一个域转换到另一个域后,使用周期一致损失和恒等映射损失来保持输入特征的相关特征。因此,这两种方法都适用于在未配对的语音文本输入上训练端到端模型。在本文中,我们利用域间损失和CycleGAN的优势来实现未配对语音和文本输入的更好的共享表示,从而改进语音到文本的映射。我们在WSJ eval92和Voxforge(非英语)上的实验结果显示,与基线相比,字符错误率降低了8.5 %,而在LibriSpeech test_clean上的结果也显示出明显的改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信