Interpretable Prediction of Pulmonary Hypertension in Newborns using Echocardiograms

H. Ragnarsdóttir, Laura Manduchi, H. Michel, F. Laumer, S. Wellmann, Ece Ozkan, Julia-Franziska Vogt
{"title":"Interpretable Prediction of Pulmonary Hypertension in Newborns using Echocardiograms","authors":"H. Ragnarsdóttir, Laura Manduchi, H. Michel, F. Laumer, S. Wellmann, Ece Ozkan, Julia-Franziska Vogt","doi":"10.48550/arXiv.2203.13038","DOIUrl":null,"url":null,"abstract":". Pulmonary hypertension (PH) in newborns and infants is a complex condition associated with several pulmonary, cardiac, and systemic diseases contributing to morbidity and mortality. Therefore, ac-curate and early detection of PH is crucial for successful management. Using echocardiography, the primary diagnostic tool in pediatrics, human assessment is both time-consuming and expertise-demanding, rais-ing the need for an automated approach. In this work, we present an interpretable multi-view video-based deep learning approach to predict PH for a cohort of 194 newborns using echocardiograms. We use spatio-temporal convolutional architectures for the prediction of PH from each view, and aggregate the predictions of the different views using majority voting. To the best of our knowledge, this is the first work for an automated assessment of PH in newborns using echocardiograms. Our results show a mean F1-score of 0.84 for severity prediction and 0.92 for binary detection using 10-fold cross-validation. We complement our predictions with saliency maps and show that the learned model focuses on clinically relevant cardiac structures, motivating its usage in clinical practice.","PeriodicalId":221267,"journal":{"name":"German Conference on Pattern Recognition","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"German Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2203.13038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

. Pulmonary hypertension (PH) in newborns and infants is a complex condition associated with several pulmonary, cardiac, and systemic diseases contributing to morbidity and mortality. Therefore, ac-curate and early detection of PH is crucial for successful management. Using echocardiography, the primary diagnostic tool in pediatrics, human assessment is both time-consuming and expertise-demanding, rais-ing the need for an automated approach. In this work, we present an interpretable multi-view video-based deep learning approach to predict PH for a cohort of 194 newborns using echocardiograms. We use spatio-temporal convolutional architectures for the prediction of PH from each view, and aggregate the predictions of the different views using majority voting. To the best of our knowledge, this is the first work for an automated assessment of PH in newborns using echocardiograms. Our results show a mean F1-score of 0.84 for severity prediction and 0.92 for binary detection using 10-fold cross-validation. We complement our predictions with saliency maps and show that the learned model focuses on clinically relevant cardiac structures, motivating its usage in clinical practice.
超声心动图对新生儿肺动脉高压的可解释性预测
. 新生儿和婴儿肺动脉高压(PH)是一种复杂的疾病,与几种肺部、心脏和全身疾病相关,可导致发病率和死亡率。因此,准确和早期发现PH是成功管理的关键。使用超声心动图,儿科的主要诊断工具,人工评估既耗时又需要专业知识,提高了对自动化方法的需求。在这项工作中,我们提出了一种可解释的基于多视图视频的深度学习方法,用于使用超声心动图预测194名新生儿的PH值。我们使用时空卷积架构来预测每个视图的PH,并使用多数投票来汇总不同视图的预测。据我们所知,这是第一个使用超声心动图自动评估新生儿PH值的工作。我们的结果显示,通过10倍交叉验证,严重程度预测的平均f1得分为0.84,二元检测的平均f1得分为0.92。我们用显著性图来补充我们的预测,并表明学习模型专注于临床相关的心脏结构,从而促进其在临床实践中的使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信