Leveraging Machine Learning Techniques for Architecting Self-Adaptive IoT Systems

H. Muccini, Karthik Vaidhyanathan
{"title":"Leveraging Machine Learning Techniques for Architecting Self-Adaptive IoT Systems","authors":"H. Muccini, Karthik Vaidhyanathan","doi":"10.1109/SMARTCOMP50058.2020.00029","DOIUrl":null,"url":null,"abstract":"The use of IoT systems is increasing day by day. However, these systems due to their heterogeneity and inherently dynamic nature, face different uncertainties from the context, environment, etc. Such uncertainties can have a big impact on the overall system QoS, especially on energy efficiency and data traffic. This calls for better ways of architecting IoT systems that may self-adapt to keep the desired QoS. This paper presents an approach that leverages the use of machine learning (ML) techniques to perform a proactive adaptation of IoT architectures using self-adaptation patterns. It i) continuously monitors the QoS parameters; ii) forecasts possible deviations from the acceptable QoS parameters; iii) selects the best adaptation pattern based on forecasts using reinforcement learning (RL) techniques; iv) checks the quality of the selected decision using feedback mechanisms; and v) continuously performs the loop of the forecast, adaptation, and feedback. The results of our evaluations show that our approach can provide accurate QoS forecasts and further improve the energy efficiency of the system while maintaining the required data traffic.","PeriodicalId":346827,"journal":{"name":"2020 IEEE International Conference on Smart Computing (SMARTCOMP)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Smart Computing (SMARTCOMP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMARTCOMP50058.2020.00029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

The use of IoT systems is increasing day by day. However, these systems due to their heterogeneity and inherently dynamic nature, face different uncertainties from the context, environment, etc. Such uncertainties can have a big impact on the overall system QoS, especially on energy efficiency and data traffic. This calls for better ways of architecting IoT systems that may self-adapt to keep the desired QoS. This paper presents an approach that leverages the use of machine learning (ML) techniques to perform a proactive adaptation of IoT architectures using self-adaptation patterns. It i) continuously monitors the QoS parameters; ii) forecasts possible deviations from the acceptable QoS parameters; iii) selects the best adaptation pattern based on forecasts using reinforcement learning (RL) techniques; iv) checks the quality of the selected decision using feedback mechanisms; and v) continuously performs the loop of the forecast, adaptation, and feedback. The results of our evaluations show that our approach can provide accurate QoS forecasts and further improve the energy efficiency of the system while maintaining the required data traffic.
利用机器学习技术构建自适应物联网系统
物联网系统的使用日益增加。然而,这些系统由于其异质性和内在动态性,面临着不同的背景、环境等不确定性。这样的不确定性会对整个系统的QoS产生很大的影响,特别是在能源效率和数据流量方面。这需要更好的方法来构建物联网系统,这些系统可以自适应以保持所需的QoS。本文提出了一种利用机器学习(ML)技术使用自适应模式对物联网架构进行主动适应的方法。i)持续监控QoS参数;ii)预测可接受的服务质素参数可能出现的偏差;iii)利用强化学习(RL)技术选择基于预测的最佳适应模式;Iv)使用反馈机制检查所选决策的质量;v)持续执行预测、适应和反馈的循环。我们的评估结果表明,我们的方法可以提供准确的QoS预测,并进一步提高系统的能源效率,同时保持所需的数据流量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信