Neural networks in feedforward control of a robot arm driven by antagonistically coupled drives

P. Milosavljevic, N. Bascarevic, K. Jovanovic, G. Kvascev
{"title":"Neural networks in feedforward control of a robot arm driven by antagonistically coupled drives","authors":"P. Milosavljevic, N. Bascarevic, K. Jovanovic, G. Kvascev","doi":"10.1109/NEUREL.2012.6419967","DOIUrl":null,"url":null,"abstract":"The paper deals with a rapidly growing trend in robotics - anthropomimetics. Following a human paragon, bio-inspired control of the robot arm is presented using artificial neural networks. This work demonstrates results achieved by feedforward control comparing feedforward backpropagation networks and radial bases networks. Use of radial bases network prevails as an efficient tool to evade the exact mathematical modeling and conventional control of the complex mechanical system that is highly nonlinear and includes passive compliance.","PeriodicalId":343718,"journal":{"name":"11th Symposium on Neural Network Applications in Electrical Engineering","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"11th Symposium on Neural Network Applications in Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEUREL.2012.6419967","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The paper deals with a rapidly growing trend in robotics - anthropomimetics. Following a human paragon, bio-inspired control of the robot arm is presented using artificial neural networks. This work demonstrates results achieved by feedforward control comparing feedforward backpropagation networks and radial bases networks. Use of radial bases network prevails as an efficient tool to evade the exact mathematical modeling and conventional control of the complex mechanical system that is highly nonlinear and includes passive compliance.
拮抗耦合驱动机械臂前馈控制中的神经网络
本文讨论了机器人技术中一个迅速发展的趋势——拟人学。以人类为典范,采用人工神经网络对机械臂进行仿生控制。这项工作证明了前馈控制所取得的结果,比较了前馈反向传播网络和径向基网络。径向基网作为一种有效的工具,可以避免复杂机械系统的精确数学建模和常规控制,这是高度非线性和被动柔化的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信