Human-Robot Collaboration using Variable Admittance Control and Human Intention Prediction

Wei-feng Lu, Zhe Hu, Jia Pan
{"title":"Human-Robot Collaboration using Variable Admittance Control and Human Intention Prediction","authors":"Wei-feng Lu, Zhe Hu, Jia Pan","doi":"10.1109/CASE48305.2020.9217040","DOIUrl":null,"url":null,"abstract":"Due to the difficulty of modeling human limb, it is very challenging to design the controller for human-robot collaboration. In this paper, we present a novel controller combining the variable admittance control and assistant control. In particular, the reinforcement learning is used to obtain the optimal damping value of the admittance controller by minimizing the reward function. In addition, we use the long short-term memory networks (LSTMs) to predict human intention based on the human limb dynamics and then an assistant controller is proposed to help human complete collaboration tasks. We validate the performance of our prediction algorithm and controller on a 7 d.o.f Franka Emika robot equipped with joint torque sensors. The proposed controller can both achieve minimum-jerk trajectory and low-effort cost.","PeriodicalId":212181,"journal":{"name":"2020 IEEE 16th International Conference on Automation Science and Engineering (CASE)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 16th International Conference on Automation Science and Engineering (CASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CASE48305.2020.9217040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Due to the difficulty of modeling human limb, it is very challenging to design the controller for human-robot collaboration. In this paper, we present a novel controller combining the variable admittance control and assistant control. In particular, the reinforcement learning is used to obtain the optimal damping value of the admittance controller by minimizing the reward function. In addition, we use the long short-term memory networks (LSTMs) to predict human intention based on the human limb dynamics and then an assistant controller is proposed to help human complete collaboration tasks. We validate the performance of our prediction algorithm and controller on a 7 d.o.f Franka Emika robot equipped with joint torque sensors. The proposed controller can both achieve minimum-jerk trajectory and low-effort cost.
利用可变导纳控制和人的意图预测的人机协作
由于人体肢体建模的困难,设计人机协作控制器是一个非常具有挑战性的问题。本文提出了一种将变导纳控制与辅助控制相结合的新型控制器。其中,利用强化学习的方法,通过最小化奖励函数来获得导纳控制器的最优阻尼值。此外,我们利用长短期记忆网络(LSTMs)基于人体肢体动力学预测人类意图,并提出一个辅助控制器来帮助人类完成协作任务。在安装关节扭矩传感器的7 d.o Franka Emika机器人上验证了预测算法和控制器的性能。所提出的控制器既能实现最小跳变轨迹,又能实现低努力成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信