Random Permutation Set

Yong Deng
{"title":"Random Permutation Set","authors":"Yong Deng","doi":"10.15837/ijccc.2022.1.4542","DOIUrl":null,"url":null,"abstract":"For exploring the meaning of the power set in evidence theory, a possible explanation of power set is proposed from the view of Pascal’s triangle and combinatorial number. Here comes the question: what would happen if the combinatorial number is replaced by permutation number? To address this issue, a new kind of set, named as random permutation set (RPS), is proposed in this paper, which consists of permutation event space (PES) and permutation mass function (PMF). The PES of a certain set considers all the permutation of that set. The elements of PES are called the permutation events. PMF describes the chance of a certain permutation event that would happen. Based on PES and PMF, RPS can be viewed as a permutation-based generalization of random finite set. Besides, the right intersection (RI) and left intersection (LI) of permutation events are presented. Based on RI and LI, the right orthogonal sum (ROS) and left orthogonal sum (LOS) of PMFs are proposed. In addition, numerical examples are shown to illustrate the proposed conceptions. The comparisons of probability theory, evidence theory, and RPS are discussed and summarized. Moreover, an RPS-based data fusion algorithm is proposed and applied in threat assessment. The experimental results show that the proposed RPS-based algorithm can reasonably and efficiently deal with uncertainty in threat assessment with respect to threat ranking and reliability ranking.","PeriodicalId":179619,"journal":{"name":"Int. J. Comput. Commun. Control","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"95","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Comput. Commun. Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15837/ijccc.2022.1.4542","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 95

Abstract

For exploring the meaning of the power set in evidence theory, a possible explanation of power set is proposed from the view of Pascal’s triangle and combinatorial number. Here comes the question: what would happen if the combinatorial number is replaced by permutation number? To address this issue, a new kind of set, named as random permutation set (RPS), is proposed in this paper, which consists of permutation event space (PES) and permutation mass function (PMF). The PES of a certain set considers all the permutation of that set. The elements of PES are called the permutation events. PMF describes the chance of a certain permutation event that would happen. Based on PES and PMF, RPS can be viewed as a permutation-based generalization of random finite set. Besides, the right intersection (RI) and left intersection (LI) of permutation events are presented. Based on RI and LI, the right orthogonal sum (ROS) and left orthogonal sum (LOS) of PMFs are proposed. In addition, numerical examples are shown to illustrate the proposed conceptions. The comparisons of probability theory, evidence theory, and RPS are discussed and summarized. Moreover, an RPS-based data fusion algorithm is proposed and applied in threat assessment. The experimental results show that the proposed RPS-based algorithm can reasonably and efficiently deal with uncertainty in threat assessment with respect to threat ranking and reliability ranking.
随机排列集
为了探讨幂集在证据理论中的意义,从帕斯卡三角形和组合数的角度提出了幂集的可能解释。问题来了:如果组合数被置换数取代会发生什么?为了解决这一问题,本文提出了一种新的集合,称为随机置换集(RPS),它由置换事件空间(PES)和置换质量函数(PMF)组成。特定集合的PES考虑该集合的所有排列。PES的元素被称为排列事件。PMF描述了某个排列事件发生的概率。RPS可以看作是基于置换的随机有限集的泛化。此外,还给出了排列事件的右交(RI)和左交(LI)。基于RI和LI,提出了pmf的右正交和(ROS)和左正交和(LOS)。此外,还给出了数值例子来说明所提出的概念。对概率论、证据论和RPS的比较进行了讨论和总结。提出了一种基于rps的数据融合算法,并将其应用于威胁评估中。实验结果表明,该算法能够合理有效地处理威胁评估中的不确定性,包括威胁排序和可靠性排序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信