Local, Instantaneous Heat Transfer in Pulse-Stabilized Fluidization

D. Pence, D. E. Beasley
{"title":"Local, Instantaneous Heat Transfer in Pulse-Stabilized Fluidization","authors":"D. Pence, D. E. Beasley","doi":"10.1115/imece1996-0095","DOIUrl":null,"url":null,"abstract":"\n The Pulsed Atmospheric Fluidized Bed Combustor (PAFBC), a hybrid combustor concept that couples a pulsed combustor with an atmospheric bubbling fluidized bed, has technical advantages in energy efficiency and emissions. The present study examines the effect of an opposing oscillatory flow on the local, instantaneous heat transfer in a laboratory scale bubbling gas-fluidized bed. This opposing secondary flow consisted of a steady mean component and an oscillating component thereby modeling the flow in the tailpipe of a pulsed combustor.\n Spectral and contact time analyses of local, instantaneous heat flux measurements from a heated, submerged horizontal cylinder clearly indicate that the bed hydrodynamics were significantly altered by the opposing secondary flow. These heat flux measurements were accomplished by employing an isothermal platinum film heat flux gage. For the present investigation, data were acquired for a monodisperse distribution of particles with a mean diameter of 345 μm and total fluidization ratios ranging from 1.1 through 2.7.\n Heat transfer observed under conditions of secondary flows with a superimposed waveform exhibit characteristics of globally dominated, as opposed to locally dominated, hydrodynamics. For low primary and secondary flow rates and a forcing frequency of 5 Hz, a substantial enhancement in heat transfer was observed. Increases in the bubble phase and emulsion phase heat transfer coefficients were identified as the primary contributors to the observed increases in time-averaged local heat transfer coefficients.","PeriodicalId":324954,"journal":{"name":"Heat Transfer: Volume 3 — Experimental Studies in Multiphase Flow; Multiphase Flow in Porous Media; Experimental Multiphase Flows and Numerical Simulation of Two-Phase Flows; Fundamental Aspects of Experimental Methods","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heat Transfer: Volume 3 — Experimental Studies in Multiphase Flow; Multiphase Flow in Porous Media; Experimental Multiphase Flows and Numerical Simulation of Two-Phase Flows; Fundamental Aspects of Experimental Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece1996-0095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The Pulsed Atmospheric Fluidized Bed Combustor (PAFBC), a hybrid combustor concept that couples a pulsed combustor with an atmospheric bubbling fluidized bed, has technical advantages in energy efficiency and emissions. The present study examines the effect of an opposing oscillatory flow on the local, instantaneous heat transfer in a laboratory scale bubbling gas-fluidized bed. This opposing secondary flow consisted of a steady mean component and an oscillating component thereby modeling the flow in the tailpipe of a pulsed combustor. Spectral and contact time analyses of local, instantaneous heat flux measurements from a heated, submerged horizontal cylinder clearly indicate that the bed hydrodynamics were significantly altered by the opposing secondary flow. These heat flux measurements were accomplished by employing an isothermal platinum film heat flux gage. For the present investigation, data were acquired for a monodisperse distribution of particles with a mean diameter of 345 μm and total fluidization ratios ranging from 1.1 through 2.7. Heat transfer observed under conditions of secondary flows with a superimposed waveform exhibit characteristics of globally dominated, as opposed to locally dominated, hydrodynamics. For low primary and secondary flow rates and a forcing frequency of 5 Hz, a substantial enhancement in heat transfer was observed. Increases in the bubble phase and emulsion phase heat transfer coefficients were identified as the primary contributors to the observed increases in time-averaged local heat transfer coefficients.
脉冲稳定流化中的局部瞬时传热
脉冲常压流化床燃烧室(PAFBC)是一种将脉冲燃烧室与常压鼓泡流化床相结合的混合型燃烧室,在节能减排方面具有技术优势。本研究考察了一个相反的振荡流对局部的影响,瞬时传热在实验室规模鼓泡气流化床。这种反向二次流由稳定平均分量和振荡分量组成,从而模拟了脉冲燃烧器排气管中的流动。从一个加热的、淹没的水平圆柱体中测量的局部瞬时热通量的光谱和接触时间分析清楚地表明,床层流体动力学被相反的二次流显著改变。这些热流测量是通过采用等温铂膜热流计完成的。在本研究中,获得了平均直径为345 μm、总流化比为1.1 ~ 2.7的颗粒单分散分布的数据。在具有叠加波形的二次流条件下观察到的传热表现出全局主导的特征,而不是局部主导的流体力学特征。当一次流和二次流流速较低且强迫频率为5 Hz时,观察到传热的显著增强。气泡相和乳液相传热系数的增加被确定为观察到的时间平均局部传热系数增加的主要贡献者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信