{"title":"A Framework for 3D Object Segmentation and Retrieval Using Local Geometric Surface Features","authors":"D. Dimou, K. Moustakas","doi":"10.1109/CW.2018.00028","DOIUrl":null,"url":null,"abstract":"Robotic vision and in particular 3D understanding has attracted intense research efforts the last few years due to its wide range of applications, such as robot-human interaction, augmented and virtual reality etc, and the introduction of lowcost 3D sensing devices. In this paper we explore one of the most popular problems encountered in 3D perception applications, namely the segmentation of a 3D scene and the retrieval of similar objects from a model database. We use a geometric approach for both the segmentation and the retrieval modules that enables us to develop a fast, low-memory footprint system without the use of large-scale annotated datasets. The system is based on the fast computation of surface normals and the encoding power of local geometric features. Our experiments demonstrate that such a complete 3D understanding framework is possible and advantages over other approaches as well as weaknesses are discussed.","PeriodicalId":388539,"journal":{"name":"2018 International Conference on Cyberworlds (CW)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Cyberworlds (CW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CW.2018.00028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Robotic vision and in particular 3D understanding has attracted intense research efforts the last few years due to its wide range of applications, such as robot-human interaction, augmented and virtual reality etc, and the introduction of lowcost 3D sensing devices. In this paper we explore one of the most popular problems encountered in 3D perception applications, namely the segmentation of a 3D scene and the retrieval of similar objects from a model database. We use a geometric approach for both the segmentation and the retrieval modules that enables us to develop a fast, low-memory footprint system without the use of large-scale annotated datasets. The system is based on the fast computation of surface normals and the encoding power of local geometric features. Our experiments demonstrate that such a complete 3D understanding framework is possible and advantages over other approaches as well as weaknesses are discussed.