{"title":"Use of airside economizer for data center thermal management","authors":"K. Anubhav, J. Yogendra","doi":"10.1109/THETA.2008.5167163","DOIUrl":null,"url":null,"abstract":"Full-scale model of a representative data center was developed, with the arrangement of bringing outside air under suitable conditions. Four different world cities were considered to evaluate the energy savings over the entire year. Results show a significant saving in chiller energy (up to 70%), and even the possibility of switching off chillers for certain months of the year. The details of relative humidity and temperature variation inside the data center space and humidification/dehumidification requirements were investigated. The rack exit air temperature was found to be lower when economizer was used, as compared to the exit air temperature without the economizer. The lower exit air temperature results from reduced hot air recirculation, as the hot air is exhausted from the hot air outlet and fresh air is brought from the outside into the data center space. The saving in energy is significant and justifies the infrastructure improvements, such as improved filters and control mechanism for the outside air influx. Fan power to bring outside air into the data center space has also been investigated.","PeriodicalId":414963,"journal":{"name":"2008 Second International Conference on Thermal Issues in Emerging Technologies","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Second International Conference on Thermal Issues in Emerging Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/THETA.2008.5167163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15
Abstract
Full-scale model of a representative data center was developed, with the arrangement of bringing outside air under suitable conditions. Four different world cities were considered to evaluate the energy savings over the entire year. Results show a significant saving in chiller energy (up to 70%), and even the possibility of switching off chillers for certain months of the year. The details of relative humidity and temperature variation inside the data center space and humidification/dehumidification requirements were investigated. The rack exit air temperature was found to be lower when economizer was used, as compared to the exit air temperature without the economizer. The lower exit air temperature results from reduced hot air recirculation, as the hot air is exhausted from the hot air outlet and fresh air is brought from the outside into the data center space. The saving in energy is significant and justifies the infrastructure improvements, such as improved filters and control mechanism for the outside air influx. Fan power to bring outside air into the data center space has also been investigated.