Vishal Bhutani, A. Majumder, M. Vankadari, S. Dutta, Aaditya Asati, Swagat Kumar
{"title":"Attentive One-Shot Meta-Imitation Learning From Visual Demonstration","authors":"Vishal Bhutani, A. Majumder, M. Vankadari, S. Dutta, Aaditya Asati, Swagat Kumar","doi":"10.1109/icra46639.2022.9812281","DOIUrl":null,"url":null,"abstract":"The ability to apply a previously-learned skill (e.g., pushing) to a new task (context or object) is an important requirement for new-age robots. An attempt is made to solve this problem in this paper by proposing a deep meta-imitation learning framework comprising of an attentive-embedding net-work and a control network, capable of learning a new task in an end-to-end manner while requiring only one or a few visual demonstrations. The feature embeddings learnt by incorporating spatial attention is shown to provide higher embedding and control accuracy compared to other state-of-the-art methods such as TecNet [7] and MIL [4]. The interaction between the embedding and the control networks is improved by using multiplicative skip-connections and is shown to overcome the overfitting of the trained model. The superiority of the proposed model is established through rigorous experimentation using a publicly available dataset and a new dataset created using PyBullet [36]. Several ablation studies have been carried out to justify the design choices.","PeriodicalId":341244,"journal":{"name":"2022 International Conference on Robotics and Automation (ICRA)","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Robotics and Automation (ICRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icra46639.2022.9812281","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The ability to apply a previously-learned skill (e.g., pushing) to a new task (context or object) is an important requirement for new-age robots. An attempt is made to solve this problem in this paper by proposing a deep meta-imitation learning framework comprising of an attentive-embedding net-work and a control network, capable of learning a new task in an end-to-end manner while requiring only one or a few visual demonstrations. The feature embeddings learnt by incorporating spatial attention is shown to provide higher embedding and control accuracy compared to other state-of-the-art methods such as TecNet [7] and MIL [4]. The interaction between the embedding and the control networks is improved by using multiplicative skip-connections and is shown to overcome the overfitting of the trained model. The superiority of the proposed model is established through rigorous experimentation using a publicly available dataset and a new dataset created using PyBullet [36]. Several ablation studies have been carried out to justify the design choices.