Autonomous Aquatic Laser-Following Robot Through RGB Sensors and Optimized Artificial Neural Networks

Efrain Mendez-Flores, Thomas Kallmann, Joseph Garcia, Brianna Mena, Naji Tarabay, Camilo Velez
{"title":"Autonomous Aquatic Laser-Following Robot Through RGB Sensors and Optimized Artificial Neural Networks","authors":"Efrain Mendez-Flores, Thomas Kallmann, Joseph Garcia, Brianna Mena, Naji Tarabay, Camilo Velez","doi":"10.1109/CACRE58689.2023.10208793","DOIUrl":null,"url":null,"abstract":"Aquatic Robots have a critical role to enhance oceanography studies, enable search and rescue scenarios, and basically enable performing tasks that without them, would be too dangerous or even impossible for humans alone. Among the different types of Aquatic prototypes, robots with laser-following features offer enhanced precision, adaptability, simplified guidance, object tracking, and research opportunities due to their suitability for multiple applications. Thereby, this paper explores the design and implementation of an Autonomous Aquatic Robot, capable of following a laser beam through an arrange of multiple RGB sensors feeding an embedded Artificial Neural Network (ANN), optimally trained through a metaheuristic algorithm (Earthquake Optimization Algorithm) to create a laser-following robot. Experimental results validate how Artificial Intelligence (AI) can be applied to generate a control structure for a laser-following robot, with over 99% of accuracy to generate activation signals by the laser presence detection, to provide a reliable signal for the autonomous prototype.","PeriodicalId":447007,"journal":{"name":"2023 8th International Conference on Automation, Control and Robotics Engineering (CACRE)","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 8th International Conference on Automation, Control and Robotics Engineering (CACRE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CACRE58689.2023.10208793","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Aquatic Robots have a critical role to enhance oceanography studies, enable search and rescue scenarios, and basically enable performing tasks that without them, would be too dangerous or even impossible for humans alone. Among the different types of Aquatic prototypes, robots with laser-following features offer enhanced precision, adaptability, simplified guidance, object tracking, and research opportunities due to their suitability for multiple applications. Thereby, this paper explores the design and implementation of an Autonomous Aquatic Robot, capable of following a laser beam through an arrange of multiple RGB sensors feeding an embedded Artificial Neural Network (ANN), optimally trained through a metaheuristic algorithm (Earthquake Optimization Algorithm) to create a laser-following robot. Experimental results validate how Artificial Intelligence (AI) can be applied to generate a control structure for a laser-following robot, with over 99% of accuracy to generate activation signals by the laser presence detection, to provide a reliable signal for the autonomous prototype.
基于RGB传感器和优化人工神经网络的自主水上激光跟踪机器人
水生机器人在加强海洋学研究,实现搜索和救援场景方面发挥着关键作用,基本上可以执行没有它们的任务,这些任务对人类来说太危险甚至不可能完成。在不同类型的水生原型中,具有激光跟踪功能的机器人提供了更高的精度、适应性、简化的指导、目标跟踪和研究机会,因为它们适合多种应用。因此,本文探索了自主水生机器人的设计和实现,该机器人能够通过多个RGB传感器的排列来跟踪激光束,这些传感器将输入嵌入式人工神经网络(ANN),并通过元启发式算法(地震优化算法)进行最佳训练,从而创建一个激光跟踪机器人。实验结果验证了人工智能(AI)如何应用于生成激光跟随机器人的控制结构,通过激光存在检测生成激活信号的准确率超过99%,为自主原型提供可靠的信号。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信