Enhancing Particle Swarm Algorithm for Multimodal Optimization Problems

Jin Wang
{"title":"Enhancing Particle Swarm Algorithm for Multimodal Optimization Problems","authors":"Jin Wang","doi":"10.4156/JCIT.VOL8.ISSUE4.63","DOIUrl":null,"url":null,"abstract":"Particle swarm optimization (PSO) is an intelligent algorithm inspired by swarm intelligence. It has been shown that PSO is a good optimizer on various optimization problems. Due to the inherent randomness of PSO, it easily falls into local minima when dealing with multimodal optimization problems. In order to enhance the performance of PSO on multimodal problems, this paper proposes a novel PSO algorithm by employing adaptive parameter control and example-based learning. Conducted experiments on nine well-known multimodal problems show that our approach outperforms the standard PSO, unified PSO (UPSO), fully informed PSO (FIPS), fitness-distance-ratio based PSO (FDR-PSO), cooperative PSO (CPSO-H) and comprehensive learning PSO (CLPSO) in terms of the solution accuracy.","PeriodicalId":254342,"journal":{"name":"2017 International Conference on Computing Intelligence and Information System (CIIS)","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Computing Intelligence and Information System (CIIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4156/JCIT.VOL8.ISSUE4.63","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Particle swarm optimization (PSO) is an intelligent algorithm inspired by swarm intelligence. It has been shown that PSO is a good optimizer on various optimization problems. Due to the inherent randomness of PSO, it easily falls into local minima when dealing with multimodal optimization problems. In order to enhance the performance of PSO on multimodal problems, this paper proposes a novel PSO algorithm by employing adaptive parameter control and example-based learning. Conducted experiments on nine well-known multimodal problems show that our approach outperforms the standard PSO, unified PSO (UPSO), fully informed PSO (FIPS), fitness-distance-ratio based PSO (FDR-PSO), cooperative PSO (CPSO-H) and comprehensive learning PSO (CLPSO) in terms of the solution accuracy.
多模态优化问题的改进粒子群算法
粒子群优化(PSO)是一种受群体智能启发的智能算法。结果表明,粒子群算法在各种优化问题上都是一种很好的优化算法。由于粒子群算法固有的随机性,在处理多模态优化问题时容易陷入局部极小。为了提高粒子群算法在多模态问题上的性能,提出了一种采用自适应参数控制和基于实例学习的粒子群算法。通过对9个知名多模态问题的实验表明,该方法在求解精度方面优于标准粒子群算法、统一粒子群算法(UPSO)、完全知情粒子群算法(FIPS)、基于适应度-距离比的粒子群算法(FDR-PSO)、合作粒子群算法(CPSO-H)和综合学习粒子群算法(CLPSO)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信