Capacity of the (1, ∞)-RLL input-constrained erasure channel with feedback

Oron Sabag, H. Permuter, N. Kashyap
{"title":"Capacity of the (1, ∞)-RLL input-constrained erasure channel with feedback","authors":"Oron Sabag, H. Permuter, N. Kashyap","doi":"10.1109/ITW.2015.7133107","DOIUrl":null,"url":null,"abstract":"The input-constrained erasure channel with feedback is considered, where the input sequence contains no consecutive 1's, i.e. the (1, ∞)-RLL constraint. The capacity is calculated using an equivalent dynamic program, which shows that the optimal average reward is equal to the capacity. The capacity can be expressed as Hb(p) C<sub>ϵ</sub> = max<sub>0≤p≤1</sub>(H<sub>b</sub>(p))/(p+(1/1-ε)) , where ϵ is the erasure probability and Hb(·) is the binary entropy. This capacity also serves as an upper bound on the capacity of the input-constrained erasure channel without feedback, a problem that is still open.","PeriodicalId":174797,"journal":{"name":"2015 IEEE Information Theory Workshop (ITW)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Information Theory Workshop (ITW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITW.2015.7133107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The input-constrained erasure channel with feedback is considered, where the input sequence contains no consecutive 1's, i.e. the (1, ∞)-RLL constraint. The capacity is calculated using an equivalent dynamic program, which shows that the optimal average reward is equal to the capacity. The capacity can be expressed as Hb(p) Cϵ = max0≤p≤1(Hb(p))/(p+(1/1-ε)) , where ϵ is the erasure probability and Hb(·) is the binary entropy. This capacity also serves as an upper bound on the capacity of the input-constrained erasure channel without feedback, a problem that is still open.
带反馈的(1,∞)-RLL输入约束擦除信道的容量
考虑具有反馈的输入约束擦除信道,其中输入序列不包含连续的1,即(1,∞)-RLL约束。利用等效动态规划计算出最优平均报酬等于容量。容量可以表示为Hb(p) c御= max0≤p≤1(Hb(p))/(p+(1/1-ε)),其中御御为擦除概率,Hb(·)为二值熵。这个容量也可以作为无反馈输入约束的擦除信道容量的上限,这是一个仍然开放的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信