{"title":"Model-Parallel Model Selection for Deep Learning Systems","authors":"Kabir Nagrecha","doi":"10.1145/3448016.3450571","DOIUrl":null,"url":null,"abstract":"As deep learning becomes more expensive, both in terms of time and compute, inefficiencies in machine learning training prevent practical usage of state-of-the-art models for most users. The newest model architectures are simply too large to be fit onto a single processor. To address the issue, many ML practitioners have turned to model parallelism as a method of distributing the computational requirements across several devices. Unfortunately, the sequential nature of neural networks causes very low efficiency and device utilization in model parallel training jobs. We propose a new form of \"shard parallelism\" combining task parallelism and model parallelism, and package it into a framework we name Hydra. Hydra recasts the problem of model parallelism in the multi-model context to produce a fine-grained parallel workload of independent model shards, rather than independent models. This new parallel design promises dramatic speedups relative to the traditional model parallelism paradigm.","PeriodicalId":360379,"journal":{"name":"Proceedings of the 2021 International Conference on Management of Data","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 International Conference on Management of Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3448016.3450571","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12
Abstract
As deep learning becomes more expensive, both in terms of time and compute, inefficiencies in machine learning training prevent practical usage of state-of-the-art models for most users. The newest model architectures are simply too large to be fit onto a single processor. To address the issue, many ML practitioners have turned to model parallelism as a method of distributing the computational requirements across several devices. Unfortunately, the sequential nature of neural networks causes very low efficiency and device utilization in model parallel training jobs. We propose a new form of "shard parallelism" combining task parallelism and model parallelism, and package it into a framework we name Hydra. Hydra recasts the problem of model parallelism in the multi-model context to produce a fine-grained parallel workload of independent model shards, rather than independent models. This new parallel design promises dramatic speedups relative to the traditional model parallelism paradigm.