Reference Signal Received Power Prediction Using Convolutional Neural Network with Residual Loss

Thearrawit Ngenjaroendee, W. Phakphisut, Thongchai Wijitpornchai, Poonlarp Areeprayoonkij, Tanun Jaruvitayakovit, N. Puttarak
{"title":"Reference Signal Received Power Prediction Using Convolutional Neural Network with Residual Loss","authors":"Thearrawit Ngenjaroendee, W. Phakphisut, Thongchai Wijitpornchai, Poonlarp Areeprayoonkij, Tanun Jaruvitayakovit, N. Puttarak","doi":"10.1109/ITC-CSCC58803.2023.10212448","DOIUrl":null,"url":null,"abstract":"In this paper, LTE measurement reports collected from user equipments are used to generate the residual loss, which can represent the loss value of each grid. The residual loss and geospatial data are used in the learning process of convolutional neural network (CNN). We also use the site configuration and three-dimensional antenna pattern. Thus, the neural network and convolutional neural network are proposed to construct deep learning to predict the reference signal received power (RSRP) in Bangkok, Thailand. The results show that residual loss can improve the efficiency of prediction.","PeriodicalId":220939,"journal":{"name":"2023 International Technical Conference on Circuits/Systems, Computers, and Communications (ITC-CSCC)","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Technical Conference on Circuits/Systems, Computers, and Communications (ITC-CSCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITC-CSCC58803.2023.10212448","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, LTE measurement reports collected from user equipments are used to generate the residual loss, which can represent the loss value of each grid. The residual loss and geospatial data are used in the learning process of convolutional neural network (CNN). We also use the site configuration and three-dimensional antenna pattern. Thus, the neural network and convolutional neural network are proposed to construct deep learning to predict the reference signal received power (RSRP) in Bangkok, Thailand. The results show that residual loss can improve the efficiency of prediction.
基于残差损失卷积神经网络的参考信号接收功率预测
本文利用从用户设备中采集的LTE测量报告生成残差损耗,残差损耗可以代表每个网格的损耗值。残差损失和地理空间数据用于卷积神经网络(CNN)的学习过程。我们还使用了站点配置和三维天线模式。因此,我们提出神经网络和卷积神经网络构建深度学习来预测泰国曼谷的参考信号接收功率(RSRP)。结果表明,残差损失可以提高预测效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信