{"title":"Latency-First Smart Contract: Overclock the Blockchain for a while","authors":"Huayi Qi, Minghui Xu, Xiuzhen Cheng, Weifeng Lyu","doi":"10.1109/INFOCOM53939.2023.10228992","DOIUrl":null,"url":null,"abstract":"Blockchain systems can become overwhelmed by a large number of transactions, leading to increased latency. As a consequence, latency-sensitive users must bid against each other and pay higher fees to ensure that their transactions are processed in priority. However, most of the time of a blockchain system (78% in Ethereum), there is still a lot of unused computational power, with few users sending transactions. To address this issue and reduce latency for users, we propose the latency-first smart contract model in this paper, which optimistically accepts committed transactions. This allows users to submit a commitment during times of high demand, and then complete the rest of the work at a lower priority. From the perspective of the blockchain, this temporarily \"overclocks\" the system. We have developed a programming tool for our model, and our experiments show that the proposed latency-first smart contract model can greatly reduce latency during the periods of high demand.","PeriodicalId":387707,"journal":{"name":"IEEE INFOCOM 2023 - IEEE Conference on Computer Communications","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE INFOCOM 2023 - IEEE Conference on Computer Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFOCOM53939.2023.10228992","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Blockchain systems can become overwhelmed by a large number of transactions, leading to increased latency. As a consequence, latency-sensitive users must bid against each other and pay higher fees to ensure that their transactions are processed in priority. However, most of the time of a blockchain system (78% in Ethereum), there is still a lot of unused computational power, with few users sending transactions. To address this issue and reduce latency for users, we propose the latency-first smart contract model in this paper, which optimistically accepts committed transactions. This allows users to submit a commitment during times of high demand, and then complete the rest of the work at a lower priority. From the perspective of the blockchain, this temporarily "overclocks" the system. We have developed a programming tool for our model, and our experiments show that the proposed latency-first smart contract model can greatly reduce latency during the periods of high demand.