Exploiting ordered dictionaries to efficiently construct histograms with q-error guarantees in SAP HANA

G. Moerkotte, David DeHaan, Norman May, A. Nica, Alexander Böhm
{"title":"Exploiting ordered dictionaries to efficiently construct histograms with q-error guarantees in SAP HANA","authors":"G. Moerkotte, David DeHaan, Norman May, A. Nica, Alexander Böhm","doi":"10.1145/2588555.2595629","DOIUrl":null,"url":null,"abstract":"Histograms that guarantee a maximum multiplicative error (q-error) for estimates may significantly improve the plan quality of query optimizers. However, the construction time for histograms with maximum q-error was too high for practical use cases. In this paper we extend this concept with a threshold, i.e., an estimate or true cardinality θ, below which we do not care about the q-error because we still expect optimal plans. This allows us to develop far more efficient construction algorithms for histograms with bounded error. The test for θ, q-acceptability developed also exploits the order-preserving dictionary encoding of SAP HANA. We have integrated this family of histograms into SAP HANA, and we report on the construction time, histograms size, and estimation errors on real-world data sets. In virtually all cases the histograms can be constructed in far less than one second, requiring less than 5% of space compared to the original compressed data.","PeriodicalId":314442,"journal":{"name":"Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2588555.2595629","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

Abstract

Histograms that guarantee a maximum multiplicative error (q-error) for estimates may significantly improve the plan quality of query optimizers. However, the construction time for histograms with maximum q-error was too high for practical use cases. In this paper we extend this concept with a threshold, i.e., an estimate or true cardinality θ, below which we do not care about the q-error because we still expect optimal plans. This allows us to develop far more efficient construction algorithms for histograms with bounded error. The test for θ, q-acceptability developed also exploits the order-preserving dictionary encoding of SAP HANA. We have integrated this family of histograms into SAP HANA, and we report on the construction time, histograms size, and estimation errors on real-world data sets. In virtually all cases the histograms can be constructed in far less than one second, requiring less than 5% of space compared to the original compressed data.
利用有序字典在SAP HANA中高效地构建具有q-error保证的直方图
直方图保证估计的最大乘法误差(q-error)可以显著提高查询优化器的计划质量。然而,对于实际用例来说,具有最大q误差的直方图的构建时间太高了。在本文中,我们将这个概念扩展为一个阈值,即一个估计或真基数θ,在这个阈值以下,我们不关心q误差,因为我们仍然期望最优计划。这使我们能够为具有有限误差的直方图开发更有效的构造算法。开发的θ, q可接受性测试也利用了SAP HANA的保序字典编码。我们已经将这一系列直方图集成到SAP HANA中,并报告构建时间、直方图大小和真实数据集上的估计误差。在几乎所有情况下,直方图都可以在不到一秒的时间内构建,与原始压缩数据相比,只需要不到5%的空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信