G. Moerkotte, David DeHaan, Norman May, A. Nica, Alexander Böhm
{"title":"Exploiting ordered dictionaries to efficiently construct histograms with q-error guarantees in SAP HANA","authors":"G. Moerkotte, David DeHaan, Norman May, A. Nica, Alexander Böhm","doi":"10.1145/2588555.2595629","DOIUrl":null,"url":null,"abstract":"Histograms that guarantee a maximum multiplicative error (q-error) for estimates may significantly improve the plan quality of query optimizers. However, the construction time for histograms with maximum q-error was too high for practical use cases. In this paper we extend this concept with a threshold, i.e., an estimate or true cardinality θ, below which we do not care about the q-error because we still expect optimal plans. This allows us to develop far more efficient construction algorithms for histograms with bounded error. The test for θ, q-acceptability developed also exploits the order-preserving dictionary encoding of SAP HANA. We have integrated this family of histograms into SAP HANA, and we report on the construction time, histograms size, and estimation errors on real-world data sets. In virtually all cases the histograms can be constructed in far less than one second, requiring less than 5% of space compared to the original compressed data.","PeriodicalId":314442,"journal":{"name":"Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2588555.2595629","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23
Abstract
Histograms that guarantee a maximum multiplicative error (q-error) for estimates may significantly improve the plan quality of query optimizers. However, the construction time for histograms with maximum q-error was too high for practical use cases. In this paper we extend this concept with a threshold, i.e., an estimate or true cardinality θ, below which we do not care about the q-error because we still expect optimal plans. This allows us to develop far more efficient construction algorithms for histograms with bounded error. The test for θ, q-acceptability developed also exploits the order-preserving dictionary encoding of SAP HANA. We have integrated this family of histograms into SAP HANA, and we report on the construction time, histograms size, and estimation errors on real-world data sets. In virtually all cases the histograms can be constructed in far less than one second, requiring less than 5% of space compared to the original compressed data.