Identifying Periodic Signal Patterns in Audio Streams

Henry Zelenak, Shahin Mehdipour Ataee
{"title":"Identifying Periodic Signal Patterns in Audio Streams","authors":"Henry Zelenak, Shahin Mehdipour Ataee","doi":"10.1109/WNYISPW57858.2022.9983495","DOIUrl":null,"url":null,"abstract":"We develop a novel and efficient method for identifying periodic signal patterns in audio streams. For this purpose we introduce the concept of a similarity function that measures the degree of equivalency of audio samples. By aggregating the measurements in the form of a so-called similarity matrix, we can thoroughly visualize the similarity of every pair of samples of an audio signal. This visualization (similarity map) is subsequently used to identify the existence of periodic patterns. Audio compression and stream reduction are two applications of our proposed method. Specifically, it can be used in light-weight stream reduction algorithms that benefit battery-powered networks such as sensor networks.","PeriodicalId":427869,"journal":{"name":"2022 IEEE Western New York Image and Signal Processing Workshop (WNYISPW)","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Western New York Image and Signal Processing Workshop (WNYISPW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WNYISPW57858.2022.9983495","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We develop a novel and efficient method for identifying periodic signal patterns in audio streams. For this purpose we introduce the concept of a similarity function that measures the degree of equivalency of audio samples. By aggregating the measurements in the form of a so-called similarity matrix, we can thoroughly visualize the similarity of every pair of samples of an audio signal. This visualization (similarity map) is subsequently used to identify the existence of periodic patterns. Audio compression and stream reduction are two applications of our proposed method. Specifically, it can be used in light-weight stream reduction algorithms that benefit battery-powered networks such as sensor networks.
识别音频流中的周期信号模式
我们开发了一种新的、有效的方法来识别音频流中的周期信号模式。为此,我们引入相似性函数的概念来度量音频样本的等效程度。通过以所谓的相似性矩阵的形式聚合测量值,我们可以完全可视化音频信号的每对样本的相似性。这种可视化(相似性图)随后用于识别周期性模式的存在。音频压缩和流压缩是该方法的两种应用。具体来说,它可以用于轻量流减少算法,有利于电池供电的网络,如传感器网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信