A Sharper Sense of Self: Probabilistic Reasoning of Program Behaviors for Anomaly Detection with Context Sensitivity

Kui Xu, K. Tian, D. Yao, B. Ryder
{"title":"A Sharper Sense of Self: Probabilistic Reasoning of Program Behaviors for Anomaly Detection with Context Sensitivity","authors":"Kui Xu, K. Tian, D. Yao, B. Ryder","doi":"10.1109/DSN.2016.49","DOIUrl":null,"url":null,"abstract":"Program anomaly detection models legitimate behaviors of complex software and detects deviations during execution. Behavior deviations may be caused by malicious exploits, design flaws, or operational errors. Probabilistic detection computes the likelihood of occurrences of observed call sequences. However, maintaining context sensitivity in detection incurs high modeling complexity and runtime overhead. We present a new anomaly-based detection technique that is both probabilistic and 1-level calling-context sensitive. We describe a matrix representation and clustering-based solution for model reduction, specifically reducing the number of hidden states in a special hidden Markov model whose parameters are initialized with program analysis. Our extensive experimental evaluation confirms the significantly improved detection accuracy and shows that attacker's ability to conduct code-reuse exploits is substantially limited.","PeriodicalId":102292,"journal":{"name":"2016 46th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN)","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"43","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 46th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSN.2016.49","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 43

Abstract

Program anomaly detection models legitimate behaviors of complex software and detects deviations during execution. Behavior deviations may be caused by malicious exploits, design flaws, or operational errors. Probabilistic detection computes the likelihood of occurrences of observed call sequences. However, maintaining context sensitivity in detection incurs high modeling complexity and runtime overhead. We present a new anomaly-based detection technique that is both probabilistic and 1-level calling-context sensitive. We describe a matrix representation and clustering-based solution for model reduction, specifically reducing the number of hidden states in a special hidden Markov model whose parameters are initialized with program analysis. Our extensive experimental evaluation confirms the significantly improved detection accuracy and shows that attacker's ability to conduct code-reuse exploits is substantially limited.
更敏锐的自我意识:基于上下文敏感性的异常检测程序行为的概率推理
程序异常检测对复杂软件的合法行为进行建模,并检测执行过程中的偏差。行为偏差可能由恶意利用、设计缺陷或操作错误引起。概率检测计算观察到的调用序列出现的可能性。然而,在检测中维护上下文敏感性会导致很高的建模复杂性和运行时开销。我们提出了一种新的基于异常的检测技术,它既具有概率性,又具有一级调用上下文敏感性。我们描述了一种矩阵表示和基于聚类的模型约简方法,具体地减少了一个特殊的隐马尔可夫模型的隐藏状态数,该模型的参数是通过程序分析初始化的。我们广泛的实验评估证实了检测准确性的显著提高,并表明攻击者进行代码重用利用的能力在很大程度上受到限制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信