{"title":"Daily Marginal CO2 Emissions Reductions from Wind and Solar Generation","authors":"M. Jansen, I. Staffell, R. Green","doi":"10.1109/EEM.2018.8469873","DOIUrl":null,"url":null,"abstract":"This paper estimates the half-hourly and daily CO2emissions from electricity generation in Britain, and the influence that wind and solar output has on these. Emissions are inferred from the output of individual plants and their expected efficiency, accounting for the penalty of part-loading thermal generators. Empirical Willans lines are created for typical coal, oil and combined-cycle gas generators from the US CEMS database, giving the first fully-empirical treatment of the British power system. We compare regressions of half-hourly and daily emissions to estimate the impact of plant start-ups, which may not occur in the specific hours when wind and solar output drops, and thus may be mis-identified in half-hourly regressions. Our preliminary findings show that dynamic plant efficiency may reduce the carbon savings from wind by 5-12% and for solar by 0-6%. The effect is strengthening with increasing penetration.","PeriodicalId":334674,"journal":{"name":"2018 15th International Conference on the European Energy Market (EEM)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 15th International Conference on the European Energy Market (EEM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EEM.2018.8469873","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
This paper estimates the half-hourly and daily CO2emissions from electricity generation in Britain, and the influence that wind and solar output has on these. Emissions are inferred from the output of individual plants and their expected efficiency, accounting for the penalty of part-loading thermal generators. Empirical Willans lines are created for typical coal, oil and combined-cycle gas generators from the US CEMS database, giving the first fully-empirical treatment of the British power system. We compare regressions of half-hourly and daily emissions to estimate the impact of plant start-ups, which may not occur in the specific hours when wind and solar output drops, and thus may be mis-identified in half-hourly regressions. Our preliminary findings show that dynamic plant efficiency may reduce the carbon savings from wind by 5-12% and for solar by 0-6%. The effect is strengthening with increasing penetration.