{"title":"Adaptive Trajectory Tracking for a Planar Two-Wheeled Vehicle with Positive Trail","authors":"Alen Turnwald, Steven Liu","doi":"10.1109/CCTA.2018.8511396","DOIUrl":null,"url":null,"abstract":"This paper proposes an adaptive trajectory tracking control for an autonomous planar two-wheeled vehicle subject to nonholonomic constraints. Furthermore, the vehicle model considers a so-called positive trail that provides self-alignment of the steering in many vehicle types, including bicycles. The dynamics of the system is described in a port-Hamiltonian form that is suitable for systematic synthesis of passivity-based controllers. This also enables an explicit description of the system dynamics including the nonholonomic constraints by an ODE. By a generalized canonical transformation, an error system is determined preserving the port-Hamiltonian structure. This reduces the tracking problem to a stabilization problem that is solved by a further transformation. The controller is designed for a structure preserving simplified model and applied to the original model handling the omitted effects due to the simplification as disturbance. Finally, an adaptive controller is applied that, in the port-Hamiltonian framework, guarantees the asymptotic tracking of a given trajectory despite large parameter uncertainties.","PeriodicalId":358360,"journal":{"name":"2018 IEEE Conference on Control Technology and Applications (CCTA)","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Conference on Control Technology and Applications (CCTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCTA.2018.8511396","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
This paper proposes an adaptive trajectory tracking control for an autonomous planar two-wheeled vehicle subject to nonholonomic constraints. Furthermore, the vehicle model considers a so-called positive trail that provides self-alignment of the steering in many vehicle types, including bicycles. The dynamics of the system is described in a port-Hamiltonian form that is suitable for systematic synthesis of passivity-based controllers. This also enables an explicit description of the system dynamics including the nonholonomic constraints by an ODE. By a generalized canonical transformation, an error system is determined preserving the port-Hamiltonian structure. This reduces the tracking problem to a stabilization problem that is solved by a further transformation. The controller is designed for a structure preserving simplified model and applied to the original model handling the omitted effects due to the simplification as disturbance. Finally, an adaptive controller is applied that, in the port-Hamiltonian framework, guarantees the asymptotic tracking of a given trajectory despite large parameter uncertainties.