Improving the random forest algorithm by randomly varying the size of the bootstrap samples

Md. Nasim Adnan
{"title":"Improving the random forest algorithm by randomly varying the size of the bootstrap samples","authors":"Md. Nasim Adnan","doi":"10.1109/IRI.2014.7051904","DOIUrl":null,"url":null,"abstract":"The Random Forest algorithm generates quite diverse decision trees as the base classifiers by applying the Random Subspace algorithm on the bootstrap samples for high dimensional datasets. However, for low dimensional datasets the diversity among the trees falls sharply for the Random Forest algorithm. To increase the ensemble accuracy by inducing more diversity among the decision trees we take a different approach. In Random Forest, the size of the bootstrap files remains the same every time to generate a decision tree as the base classifier. We propose to vary the size of the bootstrap samples randomly within a predefined range in order to increase the forest accuracy. We conduct an elaborate experimentation on several different datasets from UCI Machine Learning Repository. The experimental results show the worthiness of our proposed technique.","PeriodicalId":360013,"journal":{"name":"Proceedings of the 2014 IEEE 15th International Conference on Information Reuse and Integration (IEEE IRI 2014)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2014 IEEE 15th International Conference on Information Reuse and Integration (IEEE IRI 2014)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRI.2014.7051904","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

The Random Forest algorithm generates quite diverse decision trees as the base classifiers by applying the Random Subspace algorithm on the bootstrap samples for high dimensional datasets. However, for low dimensional datasets the diversity among the trees falls sharply for the Random Forest algorithm. To increase the ensemble accuracy by inducing more diversity among the decision trees we take a different approach. In Random Forest, the size of the bootstrap files remains the same every time to generate a decision tree as the base classifier. We propose to vary the size of the bootstrap samples randomly within a predefined range in order to increase the forest accuracy. We conduct an elaborate experimentation on several different datasets from UCI Machine Learning Repository. The experimental results show the worthiness of our proposed technique.
通过随机改变自举样本的大小来改进随机森林算法
随机森林算法通过对高维数据集的自举样本应用随机子空间算法,生成多种决策树作为基分类器。然而,对于低维数据集,随机森林算法的树之间的多样性急剧下降。为了通过在决策树中引入更多的多样性来提高集成精度,我们采用了一种不同的方法。在Random Forest中,每次生成决策树作为基分类器时,引导文件的大小保持不变。我们建议在预定义的范围内随机改变bootstrap样本的大小,以提高森林精度。我们在UCI机器学习存储库的几个不同数据集上进行了详细的实验。实验结果表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信