Parallelization of the Mixture of Gaussians Model for Motion Detection on the GPU

P. Kovačev, M. Mišić, M. Tomasevic
{"title":"Parallelization of the Mixture of Gaussians Model for Motion Detection on the GPU","authors":"P. Kovačev, M. Mišić, M. Tomasevic","doi":"10.1109/ZINC.2018.8449002","DOIUrl":null,"url":null,"abstract":"Motion detection and object tracking have many applications in various domains. The process of motion detection depends on the detailed analysis of pixels from successive frames in the given video scene. Some background subtraction techniques are commonly used for this purpose. Nowadays, even the consumer electronic devices, like cell phones, can produce high definition videos with their cameras. Efficient, real-time analysis of those videos can be performed using modern graphics processing units. In this paper, we present a GPU implementation of the mixture of Gaussians model for background subtraction. We observed speedups up to 6 times over the reference sequential implementation.","PeriodicalId":366195,"journal":{"name":"2018 Zooming Innovation in Consumer Technologies Conference (ZINC)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Zooming Innovation in Consumer Technologies Conference (ZINC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ZINC.2018.8449002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Motion detection and object tracking have many applications in various domains. The process of motion detection depends on the detailed analysis of pixels from successive frames in the given video scene. Some background subtraction techniques are commonly used for this purpose. Nowadays, even the consumer electronic devices, like cell phones, can produce high definition videos with their cameras. Efficient, real-time analysis of those videos can be performed using modern graphics processing units. In this paper, we present a GPU implementation of the mixture of Gaussians model for background subtraction. We observed speedups up to 6 times over the reference sequential implementation.
混合高斯模型在GPU上运动检测的并行化
运动检测和目标跟踪在各个领域都有广泛的应用。运动检测的过程依赖于对给定视频场景中连续帧像素的详细分析。一些背景减法技术通常用于此目的。如今,即使是像手机这样的消费电子设备,也可以用相机制作高清视频。可以使用现代图形处理单元对这些视频进行有效的实时分析。在本文中,我们提出了一个混合高斯模型的GPU实现,用于背景减法。我们观察到,与参考顺序实现相比,速度提高了6倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信