Yoshitaka Sakurai, T. Onoyama, S. Kubota, Yoshihiro Nakamura, S. Tsuruta
{"title":"A Multi-world Intelligent Genetic Algorithm to Interactively Optimize Large-scale TSP","authors":"Yoshitaka Sakurai, T. Onoyama, S. Kubota, Yoshihiro Nakamura, S. Tsuruta","doi":"10.1109/IRI.2006.252421","DOIUrl":null,"url":null,"abstract":"To optimize large-scale distribution networks, solving about 1000 middle scale (around 40 cities) TSPs (traveling salesman problems) within an interactive length of time (max. 30 seconds) is required. Yet, expert-level (less than 3% of errors) accuracy is necessary. To realize the above requirements, a multi-world intelligent GA method was developed. This method combines a high-speed GA with an intelligent GA holding problem-oriented knowledge that is effective for some special location patterns. If conventional methods were applied, solutions for more than 20 out of 20,000 cases were below expert-level accuracy. However, the developed method could solve all of 20,000 cases at expert-level","PeriodicalId":402255,"journal":{"name":"2006 IEEE International Conference on Information Reuse & Integration","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE International Conference on Information Reuse & Integration","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRI.2006.252421","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19
Abstract
To optimize large-scale distribution networks, solving about 1000 middle scale (around 40 cities) TSPs (traveling salesman problems) within an interactive length of time (max. 30 seconds) is required. Yet, expert-level (less than 3% of errors) accuracy is necessary. To realize the above requirements, a multi-world intelligent GA method was developed. This method combines a high-speed GA with an intelligent GA holding problem-oriented knowledge that is effective for some special location patterns. If conventional methods were applied, solutions for more than 20 out of 20,000 cases were below expert-level accuracy. However, the developed method could solve all of 20,000 cases at expert-level