Tilting in Module Categories

R. Wisbauer
{"title":"Tilting in Module Categories","authors":"R. Wisbauer","doi":"10.1201/9780429187605-37","DOIUrl":null,"url":null,"abstract":"Let M be a module over an associative ring R and σ[M ] the category of M -subgenerated modules. Generalizing the notion of a projective generator in σ[M ], a module P ∈ σ[M ] is called tilting in σ[M ] if (i) P is projective in the category of P -generated modules, (ii) every P -generated module is P presented, and (iii) σ[P ] = σ[M ]. We call P self-tilting if it is tilting in σ[P ]. Examples of (not self-small) tilting modules are I Q/ZZ in the category of torsion ZZ-modules, I Q⊕ I Q/ZZ in the category ZZ-Mod, certain divisible modules over integral domains, and also cohereditary coalgebras C over a QF-ring in the category of comodules over C. Self-small tilting modules P in σ[M ] are finitely presented in σ[M ]. For M = P , they are just the ∗-modules introduced by C. Menini and A. Orsatti, and for M = R, they are the usual tilting modules considered in representation theory. Notice that our techniques and most of our results also apply to locally finitely generated Grothendieck categories.","PeriodicalId":139517,"journal":{"name":"abelian groups, module theory, and topology","volume":"204 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"abelian groups, module theory, and topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1201/9780429187605-37","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Let M be a module over an associative ring R and σ[M ] the category of M -subgenerated modules. Generalizing the notion of a projective generator in σ[M ], a module P ∈ σ[M ] is called tilting in σ[M ] if (i) P is projective in the category of P -generated modules, (ii) every P -generated module is P presented, and (iii) σ[P ] = σ[M ]. We call P self-tilting if it is tilting in σ[P ]. Examples of (not self-small) tilting modules are I Q/ZZ in the category of torsion ZZ-modules, I Q⊕ I Q/ZZ in the category ZZ-Mod, certain divisible modules over integral domains, and also cohereditary coalgebras C over a QF-ring in the category of comodules over C. Self-small tilting modules P in σ[M ] are finitely presented in σ[M ]. For M = P , they are just the ∗-modules introduced by C. Menini and A. Orsatti, and for M = R, they are the usual tilting modules considered in representation theory. Notice that our techniques and most of our results also apply to locally finitely generated Grothendieck categories.
在模块类别中倾斜
设M是结合环R上的一个模,σ[M]是M -子生成模的范畴。推广σ[M]中的射影生成子的概念,如果(i) P在P生成的模的范畴中是射影的,(ii)每个P生成的模都是P表示的,并且(iii) σ[P] = σ[M],则模P∈σ[M]被称为在σ[M]中的倾斜。如果P在σ[P]内倾斜,我们称P为自倾斜。(非自小)可倾模的例子有:扭转ZZ-模范畴中的I Q/ZZ, ZZ-mod范畴中的I Q⊕I Q/ZZ,积分域上的某些可分模,以及C上模范畴中qf环上的相干余代数C。σ[M]中的自小可倾模P在σ[M]中被有限地表示。对于M = P,它们只是C. Menini和A. Orsatti引入的*模,而对于M = R,它们是表示理论中通常考虑的倾斜模。注意,我们的技术和大多数结果也适用于局部有限生成的Grothendieck类别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信