On minima of function, intersection patterns of curves, and davenport-schinzel sequences

M. Sharir, R. Livne
{"title":"On minima of function, intersection patterns of curves, and davenport-schinzel sequences","authors":"M. Sharir, R. Livne","doi":"10.1109/SFCS.1985.40","DOIUrl":null,"url":null,"abstract":"We present several results related to the problem of estimating the complexity M(f1, ..., fn) of the pointwise minimum of n continuous univariate or bivariate functions f1, ..., fn under the assumption that no pair (resp. triple) of these functions intersect in more than some fixed number s of points. Our main result is that in the one-dimensional case M(f1, ..., fn) - O(nα(n)O(α(n)s-3)) (α(n) is the functional inverse of Ackermann's function). In the twodimensional case the problem is substantially harder, and we have only some initial estimates on M, including a tight bound Θ(n2) if s = 2, and a worst-case lower bound Ω(n2α(n)) for s ≥ 6. The treatment of the twodimensional problem is based on certain properties of the intersection patterns of a collection of planar Jordan curves, which we also develop and prove here.","PeriodicalId":296739,"journal":{"name":"26th Annual Symposium on Foundations of Computer Science (sfcs 1985)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1985-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"26th Annual Symposium on Foundations of Computer Science (sfcs 1985)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFCS.1985.40","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

We present several results related to the problem of estimating the complexity M(f1, ..., fn) of the pointwise minimum of n continuous univariate or bivariate functions f1, ..., fn under the assumption that no pair (resp. triple) of these functions intersect in more than some fixed number s of points. Our main result is that in the one-dimensional case M(f1, ..., fn) - O(nα(n)O(α(n)s-3)) (α(n) is the functional inverse of Ackermann's function). In the twodimensional case the problem is substantially harder, and we have only some initial estimates on M, including a tight bound Θ(n2) if s = 2, and a worst-case lower bound Ω(n2α(n)) for s ≥ 6. The treatment of the twodimensional problem is based on certain properties of the intersection patterns of a collection of planar Jordan curves, which we also develop and prove here.
函数的极小值,曲线的相交模式,和davenport-schinzel序列
我们给出了几个与估计复杂度M(f1,…)有关的结果。, fn) n个连续单变量或二元函数f1,…,在假设没有对(p。这些函数的三倍相交于超过固定数目的5个点。我们的主要结果是,在一维情况下,M(f1,…, fn) - O(nα(n)O(α(n)s-3)) (α(n)是Ackermann函数的泛函逆)。在二维情况下,问题要困难得多,我们对M只有一些初步估计,包括s = 2时的紧界Θ(n2)和s≥6时的最坏情况下界Ω(n2α(n))。二维问题的处理是基于平面约当曲线集合的相交模式的某些性质,我们也在这里发展和证明了这些性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信