A Short Note on a Mus-Cheeger-Gromoll Type Metric

Murat Altunbaş
{"title":"A Short Note on a Mus-Cheeger-Gromoll Type Metric","authors":"Murat Altunbaş","doi":"10.53570/jnt.1167010","DOIUrl":null,"url":null,"abstract":"In this paper, we first show that the complete lift $U^{c}$ to $TM$ of a vector field $U$ on $M$ is an infinitesimal fiber-preserving conformal transformation if and only if $U$ is an infinitesimal homothetic transformation of $(M,g)$. Here, $(M, g)$ is a Riemannian manifold and $TM$ is its tangent bundle with a Mus-Cheeger-Gromoll type metric $\\tilde{g}$. Secondly, we search for some conditions under which $\\left(\\overset{h}{\\nabla},\\tilde{g}\\right)$ is a Codazzi pair on $TM$ when $(\\nabla, g)$ is a Codazzi pair on $M$ where $\\overset{h}{\\nabla}$ is the horizontal lift of a linear connection $\\nabla$ on $M$. We finally discuss the need for further research.","PeriodicalId":347850,"journal":{"name":"Journal of New Theory","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of New Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53570/jnt.1167010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we first show that the complete lift $U^{c}$ to $TM$ of a vector field $U$ on $M$ is an infinitesimal fiber-preserving conformal transformation if and only if $U$ is an infinitesimal homothetic transformation of $(M,g)$. Here, $(M, g)$ is a Riemannian manifold and $TM$ is its tangent bundle with a Mus-Cheeger-Gromoll type metric $\tilde{g}$. Secondly, we search for some conditions under which $\left(\overset{h}{\nabla},\tilde{g}\right)$ is a Codazzi pair on $TM$ when $(\nabla, g)$ is a Codazzi pair on $M$ where $\overset{h}{\nabla}$ is the horizontal lift of a linear connection $\nabla$ on $M$. We finally discuss the need for further research.
关于Mus-Cheeger-Gromoll型公制的简短注释
在本文中,我们首先证明了完全升力 $U^{c}$ 到 $TM$ 向量场的 $U$ on $M$ 无穷小保纤维保角变换是否当且仅当 $U$ 的无穷小齐次变换是 $(M,g)$. 这里, $(M, g)$ 是一个黎曼流形 $TM$ 它的切线束是否具有mu - cheeger - gromoll型度规 $\tilde{g}$. 其次,我们寻找一些条件 $\left(\overset{h}{\nabla},\tilde{g}\right)$ Codazzi是一对吗 $TM$ 什么时候 $(\nabla, g)$ Codazzi是一对吗 $M$ 在哪里 $\overset{h}{\nabla}$ 水平升力是线性连接吗 $\nabla$ on $M$. 最后讨论了进一步研究的必要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信