{"title":"On the class of two dimensional Kolmogorov systems","authors":"R. Boukoucha, Mouna Yahiaoui","doi":"10.28919/eml/3939","DOIUrl":null,"url":null,"abstract":"In this paper we charaterize the integrability and the non-existence of limit cycles of Kolmogorov systems of the form \\[ \\left\\{ \\begin{array}{l} x^{\\prime }=x\\left( P\\left( x,y\\right) +R\\left( x,y\\right) \\ln \\left\\vert \\frac{A\\left( x,y\\right) }{B\\left( x,y\\right) }\\right\\vert \\right) , \\\\ y^{\\prime }=y\\left( Q\\left( x,y\\right) +R\\left( x,y\\right) \\ln \\left\\vert \\frac{A\\left( x,y\\right) }{B\\left( x,y\\right) }\\right\\vert \\right) , \\end{array} \\right. \\] where $A\\left(x,y\\right)$, $B\\left(x,y\\right)$, $P\\left( x,y\\right)$, $Q\\left(x,y\\right)$, $R\\left(x,y\\right)$ are homogeneous polynomials of degree $a$, $a$, $n$, $n$, $m$ respectively. Concrete example exhibiting the applicability of our result is introduced.","PeriodicalId":364975,"journal":{"name":"Engineering Mathematics Letters","volume":"29 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Mathematics Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28919/eml/3939","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper we charaterize the integrability and the non-existence of limit cycles of Kolmogorov systems of the form \[ \left\{ \begin{array}{l} x^{\prime }=x\left( P\left( x,y\right) +R\left( x,y\right) \ln \left\vert \frac{A\left( x,y\right) }{B\left( x,y\right) }\right\vert \right) , \\ y^{\prime }=y\left( Q\left( x,y\right) +R\left( x,y\right) \ln \left\vert \frac{A\left( x,y\right) }{B\left( x,y\right) }\right\vert \right) , \end{array} \right. \] where $A\left(x,y\right)$, $B\left(x,y\right)$, $P\left( x,y\right)$, $Q\left(x,y\right)$, $R\left(x,y\right)$ are homogeneous polynomials of degree $a$, $a$, $n$, $n$, $m$ respectively. Concrete example exhibiting the applicability of our result is introduced.