A New Approach with Convex Hull to Measure Classification Complexity of Credit Scoring Database

Ligang Zhou, K. Lai, J. Yen
{"title":"A New Approach with Convex Hull to Measure Classification Complexity of Credit Scoring Database","authors":"Ligang Zhou, K. Lai, J. Yen","doi":"10.1109/BIFE.2009.106","DOIUrl":null,"url":null,"abstract":"Credit scoring is a typical binary classification problem. Its significance to financial institutions has brought application of many quantitative methods. Most published research is focused on increasing classification performance by adjusting algorithms, generally without a corresponding analysis of intrinsic dataset difficulties. Prior research shows that these intrinsic difficulties cause all methods to yield less than perfect classification of testing samples in dataset. Hence, our discussion concentrates on the complexity of datasets. In this study, a new approach based on convex hull is suggested as a means to measure the classification complexity of credit scoring datasets. An empirical example is provided to demonstrate the efficiency of the new approach.","PeriodicalId":133724,"journal":{"name":"2009 International Conference on Business Intelligence and Financial Engineering","volume":"317 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Business Intelligence and Financial Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIFE.2009.106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Credit scoring is a typical binary classification problem. Its significance to financial institutions has brought application of many quantitative methods. Most published research is focused on increasing classification performance by adjusting algorithms, generally without a corresponding analysis of intrinsic dataset difficulties. Prior research shows that these intrinsic difficulties cause all methods to yield less than perfect classification of testing samples in dataset. Hence, our discussion concentrates on the complexity of datasets. In this study, a new approach based on convex hull is suggested as a means to measure the classification complexity of credit scoring datasets. An empirical example is provided to demonstrate the efficiency of the new approach.
一种基于凸包的信用评分数据库分类复杂度度量方法
信用评分是一个典型的二分类问题。它对金融机构的意义带来了许多定量方法的应用。大多数已发表的研究都集中在通过调整算法来提高分类性能,通常没有对数据集的内在困难进行相应的分析。先前的研究表明,这些固有的困难导致所有方法对数据集中的测试样本的分类都不完美。因此,我们的讨论集中在数据集的复杂性上。本文提出了一种基于凸包的信用评分数据集分类复杂度度量方法。最后通过实例验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信