Estimating and Testing Skewness in a Stochastic Volatility Model

C. Lee, K. Kang
{"title":"Estimating and Testing Skewness in a Stochastic Volatility Model","authors":"C. Lee, K. Kang","doi":"10.2139/ssrn.3862981","DOIUrl":null,"url":null,"abstract":"In this paper we propose a novel approach to estimating and testing skewness in a stochastic volatility (SV) model. Our key idea is to replace a normal return error in the standard SV model with a split normal error. We show that this simple variation in the model brings about two large computational advantages. First, the SV can be simulated fast and efficiently using a one-block Gibbs sampling technique. Second, more importantly, this is the first to provide a marginal likelihood calculation method to formally test the skewness and SV in a Bayesian framework. We subsequently demonstrate the efficiency and reliability of our posterior sampling and model comparison methods through a simulation study. The simulation study results also show that neglecting skewness leads to inaccurate SV estimates and conditional expected returns. Our empirical applications to daily stock return data also show strong evidence of negative skewness.","PeriodicalId":306152,"journal":{"name":"Risk Management eJournal","volume":"105 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Risk Management eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3862981","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we propose a novel approach to estimating and testing skewness in a stochastic volatility (SV) model. Our key idea is to replace a normal return error in the standard SV model with a split normal error. We show that this simple variation in the model brings about two large computational advantages. First, the SV can be simulated fast and efficiently using a one-block Gibbs sampling technique. Second, more importantly, this is the first to provide a marginal likelihood calculation method to formally test the skewness and SV in a Bayesian framework. We subsequently demonstrate the efficiency and reliability of our posterior sampling and model comparison methods through a simulation study. The simulation study results also show that neglecting skewness leads to inaccurate SV estimates and conditional expected returns. Our empirical applications to daily stock return data also show strong evidence of negative skewness.
随机波动模型偏度的估计与检验
本文提出了一种估计和检验随机波动模型偏度的新方法。我们的关键思想是用拆分的正态错误替换标准SV模型中的正常返回错误。我们表明,这种简单的模型变化带来了两个巨大的计算优势。首先,利用单块吉布斯采样技术可以快速有效地模拟SV。其次,更重要的是,这是第一次提供一种边际似然计算方法来正式测试贝叶斯框架中的偏度和SV。随后,我们通过仿真研究证明了后验抽样和模型比较方法的有效性和可靠性。仿真研究结果还表明,忽略偏度会导致SV估计和条件期望收益不准确。我们对每日股票收益数据的实证应用也显示出负偏性的有力证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信